转自:http://blog.csdn.net/lively1982/article/details/50678657

ELK是Elasticsearch、Logstash、Kibana的简称,这三者是核心套件,但并非全部。后文的四种基本架构中将逐一介绍应用到的其它套件。

  • Elasticsearch是实时全文搜索和分析引擎,提供搜集、分析、存储数据三大功能;是一套开放REST和JAVA API等结构提供高效搜索功能,可扩展的分布式系统。它构建于Apache Lucene搜索引擎库之上。

  • Logstash是一个用来搜集、分析、过滤日志的工具。它支持几乎任何类型的日志,包括系统日志、错误日志和自定义应用程序日志。它可以从许多来源接收日志,这些来源包括 syslog、消息传递(例如 RabbitMQ)和JMX,它能够以多种方式输出数据,包括电子邮件、websockets和Elasticsearch。

  • Kibana是一个基于Web的图形界面,用于搜索、分析和可视化存储在 Elasticsearch指标中的日志数据。它利用Elasticsearch的REST接口来检索数据,不仅允许用户创建他们自己的数据的定制仪表板视图,还允许他们以特殊的方式查询和过滤数据。

我们先谈谈第一种ELK架构,如图1,这是最简单的一种ELK架构方式。优点是搭建简单,易于上手。缺点是Logstash耗资源较大,运行占用CPU和内存高。另外没有消息队列缓存,存在数据丢失隐患。建议供学习者和小规模集群使用。

此架构首先由Logstash分布于各个节点上搜集相关日志、数据,并经过分析、过滤后发送给远端服务器上的Elasticsearch进行存储。Elasticsearch将数据以分片的形式压缩存储并提供多种API供用户查询,操作。用户亦可以更直观的通过配置Kibana Web Portal方便的对日志查询,并根据数据生成报表(详细过程和配置在此省略)。

图1 ELK架构一

第二种架构(图2)引入了消息队列机制,位于各个节点上的Logstash Agent先将数据/日志传递给Kafka(或者Redis),并将队列中消息或数据间接传递给Logstash,Logstash过滤、分析后将数据传递给Elasticsearch存储。最后由Kibana将日志和数据呈现给用户。因为引入了Kafka(或者Redis),所以即使远端Logstash server因故障停止运行,数据将会先被存储下来,从而避免数据丢失。

图2 ELK架构二

这种架构适合于较大集群的解决方案,但由于Logstash中心节点和Elasticsearch的负荷会比较重,可将他们配置为集群模式,以分担负荷,这种架构的优点在于引入了消息队列机制,均衡了网络传输,从而降低了网络闭塞尤其是丢失数据的可能性,但依然存在Logstash占用系统资源过多的问题。

第三种架构(图3)引入了Logstash-forwarder。首先,Logstash-forwarder将日志数据搜集并统一发送给主节点上的Logstash,Logstash分析、过滤日志数据后发送至Elasticsearch存储,并由Kibana最终将数据呈现给用户。

图3 ELK架构三

这种架构解决了Logstash在各计算机点上占用系统资源较高的问题。经测试得出,相比Logstash,Logstash-forwarder所占用系统CPU和MEM几乎可以忽略不计。另外,Logstash-forwarder和Logstash间的通信是通过SSL加密传输,起到了安全保障。如果是较大集群,用户亦可以如结构三那样配置logstash集群和Elasticsearch集群,引入High Available机制,提高数据传输和存储安全。更主要的配置多个Elasticsearch服务,有助于搜索和数据存储效率。但在此种架构下发现Logstash-forwarder和Logstash间通信必须由SSL加密传输,这样便有了一定的限制性。

第四种架构(图4),将Logstash-forwarder替换为Beats。经测试,Beats满负荷状态所耗系统资源和Logstash-forwarder相当,但其扩展性和灵活性有很大提高。Beats platform目前包含有Packagebeat、Topbeat和Filebeat三个产品,均为Apache 2.0 License。同时用户可根据需要进行二次开发。

图4 ELK架构四

这种架构原理基于第三种架构,但是更灵活,扩展性更强。同时可配置Logstash 和Elasticsearch 集群用于支持大集群系统的运维日志数据监控和查询。

ELK架构浅析的更多相关文章

  1. boost.asio源码剖析(二) ---- 架构浅析

    * 架构浅析 先来看一下asio的0层的组件图.                     (图1.0) io_object是I/O对象的集合,其中包含大家所熟悉的socket.deadline_tim ...

  2. Camera服务之--架构浅析

    Camera服务之--架构浅析 分类: Camera 分析2011-12-22 11:17 7685人阅读 评论(3) 收藏 举报 android硬件驱动框架jnilinux内核平台 一.应用层 Ca ...

  3. ELK 架构之 Elasticsearch 和 Kibana 安装配置

    阅读目录: 1. ELK Stack 简介 2. 环境准备 3. 安装 Elasticsearch 4. 安装 Kibana 5. Kibana 使用 6. Elasticsearch 命令 最近在开 ...

  4. ELK 架构之 Logstash 和 Filebeat 安装配置

    上一篇:ELK 架构之 Elasticsearch 和 Kibana 安装配置 阅读目录: 1. 环境准备 2. 安装 Logstash 3. 配置 Logstash 4. Logstash 采集的日 ...

  5. ELK 架构之 Logstash 和 Filebeat 配置使用(采集过滤)

    相关文章: ELK 架构之 Elasticsearch 和 Kibana 安装配置 ELK 架构之 Logstash 和 Filebeat 安装配置 ELK 使用步骤:Spring Boot 日志输出 ...

  6. ELK 架构之 Elasticsearch、Kibana、Logstash 和 Filebeat 安装配置汇总(6.2.4 版本)

    相关文章: ELK 架构之 Elasticsearch 和 Kibana 安装配置 ELK 架构之 Logstash 和 Filebeat 安装配置 ELK 架构之 Logstash 和 Filebe ...

  7. Others-大数据平台Lambda架构浅析(全量计算+增量计算)

    大数据平台Lambda架构浅析(全量计算+增量计算) 2016年12月23日 22:50:53 scuter_victor 阅读数:1642 标签: spark大数据lambda 更多 个人分类: 造 ...

  8. ELK系列四:Logstash的在ELK架构中的使用和简单的输入

    1.ELK架构中Logstash的位置: 1.1.小规模集群部署(学习者适用的架构) 简单的只有Logstash.Elasticsearch.Kibana,由Logstash收集日志或者流量信息,过滤 ...

  9. ELK学习笔记之ELK架构与介绍

    0x00 为什么用到ELK 一般我们需要进行日志分析场景:直接在日志文件中 grep.awk 就可以获得自己想要的信息.但在规模较大的场景中,此方法效率低下,面临问题包括日志量太大如何归档.文本搜索太 ...

随机推荐

  1. Intro to Computer Science Class Online (CS101) - Udacity

    Intro to Computer Science Class Online (CS101) - Udacity Building a Search Engine

  2. 基于视觉信息的网页分块算法(VIPS) - yysdsyl的专栏 - 博客频道 - CSDN.NET

    基于视觉信息的网页分块算法(VIPS) - yysdsyl的专栏 - 博客频道 - CSDN.NET 于视觉信息的网页分块算法(VIPS) 2012-07-29 15:22 1233人阅读 评论(1) ...

  3. iso-开发基础知识-5-适配器

    个人学习总结仅供参考:欢迎拍砖 1.适配器:用于连接两种不同种类的对象. 2.分为2种:类适配,对象适配. 3.委托(Delegate)模式属于对象适配器: 4.何时使用适配器模式 书中的这幅图更好的 ...

  4. Oracle触发器(trigger):view,schema,database

    视图trigger, instead of 我们知道如果一个view只是由一个table构成,那在view上做啥操作没太多限制.如果view是由多个table组成那在view上做啥unpdate,in ...

  5. 打开固定文件的pr_debug

    驱动中pr_debug定义在kernel/include/linux/printk.h /* If you are writing a driver, please usedev_dbg instea ...

  6. 有感PMI Exam Dev Workshop

    有幸參加了PMI协会在上海举办的PMI Exam Development Workshop活动.这是PMI协会第二次在中国举办此活动,上一次是2009年北京. 我第一次參加,感觉收获非常多. 我们知道 ...

  7. 在基类中的析构函数声明为virtual

    #include <iostream> using namespace std; class Father { public: ~Father() { cout << &quo ...

  8. linux 之进程间通信-------------InterProcess Communication

    进程间通信至少可以通过传送打开文件来实现,不同的进程通过一个或多个文件来传递信息,事实上,在很多应用系统里,都使用了这种方法.但一般说来,进程间 通信(IPC:InterProcess Communi ...

  9. 优化器的使用oracle ---explain plan

    如果要分析某条SQL的性能问题,通常我们要先看SQL的执行计划,看看SQL的每一步执行是否存在问题. 如果一条SQL平时执行的好好的,却有一天突然性能很差,如果排除了系统资源和阻塞的原因,那么基本可以 ...

  10. javascript操作JSON字符

    1.先要区分JSON字符串和JSON对象 JSON字符串: Var strJSON = “{“Area”:[{“AreaId”:”123”},{“AreaId”:”345”}]}”,   或者 Var ...