Codeforces 235E

原题
题目描述:设\(d(n)\)表示\(n\)的因子个数, 给定\(a, b, c\), 求:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) (mod 2^{30})\]

solution
rng_58 Orz,这方法太神了,rng_58证明了下面这条式子:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) =\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]

证明

\[f(a, b, c)=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) \]
\[g(a, b, c)=\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
由容斥原理可得(一式
\[d(i \cdot j \cdot k)=f(a, b, c)-f(a-1, b, c)-f(a, b-1, c)-f(a, b, c-1)+f(a-1, b-1, c)+f(a-1, b, c-1)+f(a, b-1, c-1)-f(a-1, b-1, c-1)\]
则若(二式
\[d(i \cdot j \cdot k)=g(a, b, c)-g(a-1, b, c)-g(a, b-1, c)-g(a, b, c-1)+g(a-1, b-1, c)+g(a-1, b, c-1)+g(a, b-1, c-1)-g(a-1, b-1, c-1)\]
则原命题得证。
二式\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor +
\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor - \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor\]
\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} (\left \lfloor \frac{a}{i} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor) (\left \lfloor \frac{b}{j} \right \rfloor - \left \lfloor \frac{b-1}{j} \right \rfloor) (\left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{c-1}{k} \right \rfloor)\]
即只有当\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\)时,和中的式子才等于\(1\),否则为\(0\).

设\(p_i\)为质因子,\(q_i\)为\(p_{i}^{q_i} \leq n\)的最大值,则\(n\)的因数个数为
\[\prod_{i} (q_i +1)\]

根据上述定义设类似\(q_i\)的定义对于\(a\)为\(x_i\), \(b\)为\(y_i\), \(c\)为\(z_i\)

对于\(p_i\),该质数的个数为\(x_i+y_i+z_i\),
因为\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\), 对于\(p_i\), 答案为\((0, 0, 0)+(1 \text ~ x_i, 0, 0)+(0, 1 \text ~ y_i, 0)+(0, 0, 1 \text ~ z_i)=x_i+y_i+z_i+1\)
所以二式=一式,即\(f(a, b, c)=g(a, b, c)\)
然后就可以用莫比乌斯的性质函数来解了。
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d=(j, k)} \epsilon(d) \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d} \mu(d) \left \lfloor \frac{b}{j'd} \right \rfloor \left \lfloor \frac{c}{k'd} \right \rfloor\]
因为\(i\)与\(d, j', k'\)都有关联,所以只好枚举
枚举\(i\),枚举\(d\),然后分别枚举\(j'\), \(k'\),然后相乘,时间复杂度为:\(O(n^2ln\) \(n)\)

Codeforces 235E的更多相关文章

  1. Codeforces 235E Number Challenge

    http://codeforces.com/contest/235/problem/E 远距离orz......rng_58 证明可以见这里(可能要FQ才能看到) 还是copy一下证明吧: 记 $$f ...

  2. 【codeforces 235E】 Number Challenge

    http://codeforces.com/problemset/problem/235/E (题目链接) 题意 给出${a,b,c}$,求${\sum_{i=1}^a\sum_{j=1}^b\sum ...

  3. 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E

    https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...

  4. CodeForces 235E Number Challenge (莫比乌斯反演)

    题意:求,其中d(x) 表示 x 的约数个数. 析:其实是一个公式题,要知道一个结论 知道这个结论就好办了. 然后就可以解决这个问题了,优化就是记忆化gcd. 代码如下: #pragma commen ...

  5. Codeforces 235E. Number Challenge DP

    dp(a,b,c,p) = sigma ( dp(a/p^i,b/p^j,c/p^k) * ( 1+i+j+k) ) 表示用小于等于p的素数去分解的结果有多少个 E. Number Challenge ...

  6. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  7. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  8. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  9. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

随机推荐

  1. cocos2d-x中的Box2D物理引擎

    在Cocos2d-x中集成了2个物理引擎,一个是Chipmunk,一个是Box2D.前者是用C语言编写的,文档和例子相对较少:Box2D是用C++写的,并且有比较完善的文档和资料.所以在需要使用物理引 ...

  2. Big Number(大数)

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. SQL Server 823,824 错误

    第一: 823错误只代表.SQL server 要向操作系统申请一个页面读写的时候遇到Windos读取或写入失败.823错误是读写请求时发生的 和读写的内容没有关系.823与SQL server 本身 ...

  4. 检测android的版本的办法

    http://www.cnblogs.com/wzh206/archive/2010/05/02/1726076.html 如何判断Android系统的版本 随着Android版本的增多,在不同的版本 ...

  5. codec ruby和json格式输出

    zjtest7-frontend:/usr/local/logstash-2.3.4/config# cat geoip.conf input {stdin {} } filter { geoip { ...

  6. ACM计算几何题目推荐

    //第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...

  7. 高龄“潮男”优衣库老板柳井正_榜样_奢华主义_YOKA时尚网

    高龄"潮男"优衣库老板柳井正_榜样_奢华主义_YOKA时尚网 高龄"潮男"优衣库老板柳井正

  8. Xcode8 注释快捷键无效, 解决方案

    这个是因为苹果解决xcode ghost.把插件屏蔽了.解决方法命令运行: sudo /usr/libexec/xpccachectl 然后必须重启电脑后生效    

  9. DSP TMS320C6000基础学习(1)——介绍

    主要内容 1. Why process signals digitally? (1)模拟电路由模拟组件构成:电阻.电容及电感等,这些组件随着电压.温度或机械结构的改变会动态影响到模拟电路的效果: (2 ...

  10. CSS3中的弹性流体盒模型技术详解

    先回顾一下CSS1 和 CSS2中都已经定义了哪些布局方面的属性,这样也会增加我们理解弹性布局.   其实我们现在有很多一部分人,你们刚刚接触CSS层叠样式表,或者接触有一段时间了,但是却没有很好的去 ...