Codeforces 235E

原题
题目描述:设\(d(n)\)表示\(n\)的因子个数, 给定\(a, b, c\), 求:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) (mod 2^{30})\]

solution
rng_58 Orz,这方法太神了,rng_58证明了下面这条式子:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) =\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]

证明

\[f(a, b, c)=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) \]
\[g(a, b, c)=\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
由容斥原理可得(一式
\[d(i \cdot j \cdot k)=f(a, b, c)-f(a-1, b, c)-f(a, b-1, c)-f(a, b, c-1)+f(a-1, b-1, c)+f(a-1, b, c-1)+f(a, b-1, c-1)-f(a-1, b-1, c-1)\]
则若(二式
\[d(i \cdot j \cdot k)=g(a, b, c)-g(a-1, b, c)-g(a, b-1, c)-g(a, b, c-1)+g(a-1, b-1, c)+g(a-1, b, c-1)+g(a, b-1, c-1)-g(a-1, b-1, c-1)\]
则原命题得证。
二式\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor +
\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor - \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor\]
\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} (\left \lfloor \frac{a}{i} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor) (\left \lfloor \frac{b}{j} \right \rfloor - \left \lfloor \frac{b-1}{j} \right \rfloor) (\left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{c-1}{k} \right \rfloor)\]
即只有当\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\)时,和中的式子才等于\(1\),否则为\(0\).

设\(p_i\)为质因子,\(q_i\)为\(p_{i}^{q_i} \leq n\)的最大值,则\(n\)的因数个数为
\[\prod_{i} (q_i +1)\]

根据上述定义设类似\(q_i\)的定义对于\(a\)为\(x_i\), \(b\)为\(y_i\), \(c\)为\(z_i\)

对于\(p_i\),该质数的个数为\(x_i+y_i+z_i\),
因为\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\), 对于\(p_i\), 答案为\((0, 0, 0)+(1 \text ~ x_i, 0, 0)+(0, 1 \text ~ y_i, 0)+(0, 0, 1 \text ~ z_i)=x_i+y_i+z_i+1\)
所以二式=一式,即\(f(a, b, c)=g(a, b, c)\)
然后就可以用莫比乌斯的性质函数来解了。
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d=(j, k)} \epsilon(d) \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d} \mu(d) \left \lfloor \frac{b}{j'd} \right \rfloor \left \lfloor \frac{c}{k'd} \right \rfloor\]
因为\(i\)与\(d, j', k'\)都有关联,所以只好枚举
枚举\(i\),枚举\(d\),然后分别枚举\(j'\), \(k'\),然后相乘,时间复杂度为:\(O(n^2ln\) \(n)\)

Codeforces 235E的更多相关文章

  1. Codeforces 235E Number Challenge

    http://codeforces.com/contest/235/problem/E 远距离orz......rng_58 证明可以见这里(可能要FQ才能看到) 还是copy一下证明吧: 记 $$f ...

  2. 【codeforces 235E】 Number Challenge

    http://codeforces.com/problemset/problem/235/E (题目链接) 题意 给出${a,b,c}$,求${\sum_{i=1}^a\sum_{j=1}^b\sum ...

  3. 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E

    https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...

  4. CodeForces 235E Number Challenge (莫比乌斯反演)

    题意:求,其中d(x) 表示 x 的约数个数. 析:其实是一个公式题,要知道一个结论 知道这个结论就好办了. 然后就可以解决这个问题了,优化就是记忆化gcd. 代码如下: #pragma commen ...

  5. Codeforces 235E. Number Challenge DP

    dp(a,b,c,p) = sigma ( dp(a/p^i,b/p^j,c/p^k) * ( 1+i+j+k) ) 表示用小于等于p的素数去分解的结果有多少个 E. Number Challenge ...

  6. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  7. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  8. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  9. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

随机推荐

  1. Android之SurfaceView学习

    首先我们先来看下官方API对SurfaceView的介绍 SurfaceView的API介绍 Provides a dedicated drawing surface embedded inside ...

  2. 【Mysql5.7数据目录和配置文件目录】

    Win7下 C:\ProgramData\MySQL\MySQL Server 5.7\ 如何查看mysql运行.访问记录等日志 1.首先确认你日志是否启用了mysql>show variabl ...

  3. Linux进程间通信——使用信号

    一.什么是信号 用过Windows的我们都知道,当我们无法正常结束一个程序时,可以用任务管理器强制结束这个进程,但这其实是怎么实现的呢?同样的功能在Linux上是通过生成信号和捕获信号来实现的,运行中 ...

  4. 你真的用上keepalive了吗

    转自http://qa.blog.163.com/blog/static/19014700220134771052763/ Keep-Alive即俗称的长连接,使客户端到服务端建立的连接持续有效,当对 ...

  5. Baidu Sitemap Generator插件使用图解教程

    这两天因为百度对本博客文章收录更新很慢,一直在网络查找真正的原因和解决方法.最终发现了柳城开发的Baidu Sitemap Generator WordPress插件,最终效果如果还需要验证一段时间. ...

  6. Asp.Net构架(Http请求处理流程)、Asp.Net 构架(Http Handler 介绍)、Asp.Net 构架(HttpModule 介绍)

    转载: HttpHaddler,HttpModule http://blog.csdn.net/jiuqiyuliang/article/details/18713451 http://www.cnb ...

  7. poj 1852 Ants_贪心

    题目大意:很多的蚂蚁都在长度为L(cm)的膀子上爬行,它们的速度都是1cm/s,到了棒子终端的时候,蚂蚁就会掉下去.如果在爬行途中遇到其他蚂蚁,两只蚂蚁的方向都会逆转.已知蚂蚁在棒子的最初位置坐标,但 ...

  8. OpenStack ceilometer部署安装监控,计费数据抓取测试Ok

  9. 网易云课堂_C++程序设计入门(上)_第5单元:万类霜天竞自由 – 对象和类的更多内容_第5单元作业【4】 - 在线编程(难度:难)

    第5单元作业[4] - 在线编程(难度:难) 查看帮助 返回   温馨提示: 1.本次作业属于Online Judge题目,提交后由系统即时判分. 2.学生可以在作业截止时间之前不限次数提交答案,系 ...

  10. Exchange Cards(dfs)

    Exchange Cards Time Limit: 2 Seconds      Memory Limit: 65536 KB As a basketball fan, Mike is also f ...