Codeforces 235E
Codeforces 235E
原题
题目描述:设\(d(n)\)表示\(n\)的因子个数, 给定\(a, b, c\), 求:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) (mod 2^{30})\]
solution
rng_58 Orz,这方法太神了,rng_58证明了下面这条式子:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) =\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
证明:
设
\[f(a, b, c)=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) \]
\[g(a, b, c)=\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
由容斥原理可得(一式)
\[d(i \cdot j \cdot k)=f(a, b, c)-f(a-1, b, c)-f(a, b-1, c)-f(a, b, c-1)+f(a-1, b-1, c)+f(a-1, b, c-1)+f(a, b-1, c-1)-f(a-1, b-1, c-1)\]
则若(二式)
\[d(i \cdot j \cdot k)=g(a, b, c)-g(a-1, b, c)-g(a, b-1, c)-g(a, b, c-1)+g(a-1, b-1, c)+g(a-1, b, c-1)+g(a, b-1, c-1)-g(a-1, b-1, c-1)\]
则原命题得证。
二式\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor +
\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor - \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor\]
\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} (\left \lfloor \frac{a}{i} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor) (\left \lfloor \frac{b}{j} \right \rfloor - \left \lfloor \frac{b-1}{j} \right \rfloor) (\left \lfloor \frac{c}{k} \right \rfloor - \left \lfloor \frac{c-1}{k} \right \rfloor)\]
即只有当\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\)时,和中的式子才等于\(1\),否则为\(0\).
设\(p_i\)为质因子,\(q_i\)为\(p_{i}^{q_i} \leq n\)的最大值,则\(n\)的因数个数为
\[\prod_{i} (q_i +1)\]
根据上述定义设类似\(q_i\)的定义对于\(a\)为\(x_i\), \(b\)为\(y_i\), \(c\)为\(z_i\)
对于\(p_i\),该质数的个数为\(x_i+y_i+z_i\),
因为\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\), 对于\(p_i\), 答案为\((0, 0, 0)+(1 \text ~ x_i, 0, 0)+(0, 1 \text ~ y_i, 0)+(0, 0, 1 \text ~ z_i)=x_i+y_i+z_i+1\)
所以二式=一式,即\(f(a, b, c)=g(a, b, c)\)
然后就可以用莫比乌斯的性质函数来解了。
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d=(j, k)} \epsilon(d) \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d} \mu(d) \left \lfloor \frac{b}{j'd} \right \rfloor \left \lfloor \frac{c}{k'd} \right \rfloor\]
因为\(i\)与\(d, j', k'\)都有关联,所以只好枚举
枚举\(i\),枚举\(d\),然后分别枚举\(j'\), \(k'\),然后相乘,时间复杂度为:\(O(n^2ln\) \(n)\)
Codeforces 235E的更多相关文章
- Codeforces 235E Number Challenge
http://codeforces.com/contest/235/problem/E 远距离orz......rng_58 证明可以见这里(可能要FQ才能看到) 还是copy一下证明吧: 记 $$f ...
- 【codeforces 235E】 Number Challenge
http://codeforces.com/problemset/problem/235/E (题目链接) 题意 给出${a,b,c}$,求${\sum_{i=1}^a\sum_{j=1}^b\sum ...
- 洛谷 P3327 [SDOI2015]约数个数和 || Number Challenge Codeforces - 235E
https://www.luogu.org/problemnew/show/P3327 不会做. 去搜题解...为什么题解都用了一个奇怪的公式?太奇怪了啊... 公式是这样的: $d(xy)=\sum ...
- CodeForces 235E Number Challenge (莫比乌斯反演)
题意:求,其中d(x) 表示 x 的约数个数. 析:其实是一个公式题,要知道一个结论 知道这个结论就好办了. 然后就可以解决这个问题了,优化就是记忆化gcd. 代码如下: #pragma commen ...
- Codeforces 235E. Number Challenge DP
dp(a,b,c,p) = sigma ( dp(a/p^i,b/p^j,c/p^k) * ( 1+i+j+k) ) 表示用小于等于p的素数去分解的结果有多少个 E. Number Challenge ...
- python爬虫学习(5) —— 扒一下codeforces题面
上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...
- 【Codeforces 738D】Sea Battle(贪心)
http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...
- 【Codeforces 738C】Road to Cinema
http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...
- 【Codeforces 738A】Interview with Oleg
http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...
随机推荐
- 【写一个自己的js库】 2.实现自己的调试日志
还是本着学习的目的,实现一个自己的调试日志,界面很简单,就是将调试信息显示在页面的正中央,用一个ul包裹,每条信息就是一个li. 1.新建一个myLogger.js文件,将需要的方法声明一下.其中va ...
- android事件详解
http://blog.csdn.net/asce1885/article/details/7596669 http://blog.csdn.net/liranke/article/details/6 ...
- poj 1094 Sorting It All Out_拓扑排序
题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...
- tsm ANS0326E问题处理
备份tsm备份oracle 报错 ANS0326E This node has exceeded its maximum number of mount points. 查看所有节点详细信息 q no ...
- hdu 5570 balls(期望好题)
Problem Description There are n balls with m colors. The possibility of that the color of the i-th b ...
- ExecuteReader(),ExecuteNonQuery(),ExecuteScalar(),ExecuteXmlReader()之间的区别
本文来自:http://www.cnblogs.com/zhouxiaxue/archive/2006/05/12/398266.html http://www.cnblogs.com/yaoxc/a ...
- shu_1186 字符排列问题
cid=1079&pid=23">http://202.121.199.212/JudgeOnline/problem.php?cid=1079&pid=23 分析: ...
- JAVA File类 分析(三)
前面两篇与大家一起研究了unix下的文件系统,本篇将和大家一起分析 文件的属性和文件夹. ok,废话不说,先来段代码 #include <stdio.h> #include <sys ...
- 开发板怎样开启telnet服务
linux开发板开启telnet服务须要一下几个条件: 1.文件系统支持telnet busybox默认是把telnet和telnetd功能编进去了的,所以这一步一般都省了. 2.挂载devpts 挂 ...
- Sequence one(hdu2610dfs+去重)
题目:有一个数列N,和一个数字k,输出该数列的前k个子序列,如果k大于N的所有子序列,输出所有符合要求的序列,序列要求不能是递减序列 比如: 3 5 1 3 2 的前五个序列为 1 3 2 1 3 1 ...