如何在Data Lake Analytics中使用临时表
前言
Data Lake Analytics (后文简称DLA)是阿里云重磅推出的一款用于大数据分析的产品,可以对存储在OSS,OTS上的数据进行查询分析。相较于传统的数据分析产品,用户无需将数据重新加载至DLA,只需在DLA中创建一张与数据源关联的表,不仅简化了分析过程,还节约了存储成本,是做大数据分析的不二之选。
当用户想通过DLA对OSS上的某个文件或者目录进行查询时,第一步需要先针对该文件或目录在DLA中创建一个table。当查询结束后,如果该table将不再使用,需要用户手动执行drop命令进行清理。
在实际应用的某些场景中,有些table只在查询中使用一次即可,但每次使用都要手动建表删表。这时,用户可以选择使用DLA的临时表。该表的生命周期仅限于一条查询语句,当查询结束后,临时表将被自动删除。
本文将以OSS数据源为例,重点介绍如何在查询语句中定义和使用临时表。
临时表
在DLA中,用户可以在查询SQL中嵌入建表语句(即,对临时表的定义),从而对嵌入的临时表进行查询。
示例1:查询中只包含一个临时表,且建表语句相对简单。
SELECT col1, col2 FROM
TABLE temp_1
(
col1 int,
col2 string
)
LOCATION 'oss://test-bucket-for-dla/tbl1_part/kv1.txt'
-- 等效于 ->
CREATE EXTERNAL TABLE temp_1
(
col1 int,
col2 int
)
LOCATION 'oss://test-bucket-for-dla/tbl1_part/kv1.txt';
SELECT col1, col2 FROM temp_1;
示例2:查询中只含有一个临时表,建表语句中需要指定ROW FORMAT以及TBLPROPERITES。
SELECT id, string_col FROM
TABLE temp_2
(
id INT COMMENT 'default',
string_col STRING COMMENT 'default'
) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 'oss://test-bucket-for-dla/tbl1_part/kv1.txt'
TBLPROPERTIES ('recursive.directories'='false');
-- 等效于 ->
CREATE EXTERNAL TABLE temp_2
(
id INT COMMENT 'default',
string_col STRING COMMENT 'default'
) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 'oss://test-bucket-for-dla/tbl1_part/kv1.txt'
TBLPROPERTIES ('recursive.directories'='false');
SELECT id, string_col from temp_2;
示例3:建表语句中含有多个临时表
SELECT temp_1.col1, temp_2.smallint_col
FROM
TABLE temp_1
(
col1 int,
col2 int
)
LOCATION 'oss://test-bucket-for-dla/tbl1_part/kv1.txt';
JOIN
TABLE temp_2
(
id INT COMMENT 'default',
bool_col BOOLEAN COMMENT 'default',
tinyint_col TINYINT COMMENT 'default',
smallint_col SMALLINT COMMENT 'default',
int_col INT COMMENT 'default',
bigint_col BIGINT COMMENT 'default',
float_col FLOAT COMMENT 'default',
double_col DOUBLE COMMENT 'default',
date_string_col STRING COMMENT 'default',
string_col STRING COMMENT 'default',
timestamp_col TIMESTAMP COMMENT 'default'
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES ('field.delim'='|', 'serialization.format'='|')
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 'oss://test-bucket-for-dla/tbl2/tbl2.csv'
TBLPROPERTIES ('recursive.directories'='false')
ON temp_1.col1 = temp_2.id
WHERE temp_2.bool_col = true;
-- 等价于 ->
CREATE EXTERNAL TABLE temp_1
(
col1 int,
col2 int
)
LOCATION 'oss://test-bucket-for-dla/tbl1_part/kv1.txt';
CREATE EXTERNAL TABLE temp_2
(
id INT COMMENT 'default',
bool_col BOOLEAN COMMENT 'default',
tinyint_col TINYINT COMMENT 'default',
smallint_col SMALLINT COMMENT 'default',
int_col INT COMMENT 'default',
bigint_col BIGINT COMMENT 'default',
float_col FLOAT COMMENT 'default',
double_col DOUBLE COMMENT 'default',
date_string_col STRING COMMENT 'default',
string_col STRING COMMENT 'default',
timestamp_col TIMESTAMP COMMENT 'default'
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES ('field.delim'='|', 'serialization.format'='|')
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 'oss://test-bucket-for-dla/tbl2/tbl2.csv'
TBLPROPERTIES ('recursive.directories'='false');
SELECT temp_1.col1, temp_2.smallint_col
FROM
temp_1
JOIN
temp_2
ON temp_1.col1 = temp_2.id
WHERE temp_2.bool_col = true;
适用场景
当OSS的目录下有数量较多的数据文件,这些文件的目录结构如下:
oss://test-bucket-for-dla/mytable/data1.csv
oss://test-bucket-for-dla/mytable/data2.csv
...
oss://test-bucket-for-dla/mytable/dataN.csv
- 目录mytable下的所有文件有着相同的数据结构,即表结构相同
- 每次SQL查询只针对一个文件,即dataN.csv
此时,用户可以考虑使用临时表进行查询,每次只需替换SQL中临时表的LOCATION路径值即可。
注意事项
- 在一条查询语句中的多个临时表,其表名不能相同,需要在该查询语句中具有唯一性;
- 在执行查询前,需要先选定一个database,可以执行 use ;
- 临时表的路径需要是当前database所指目录下的子目录或者文件。
更多文章
- Data Lake Analytics + OSS数据文件格式处理大全:https://yq.aliyun.com/articles/623246
- Data Lake Analytics中OSS LOCATION的使用说明:https://yq.aliyun.com/articles/623247
- 如何使用Data Lake Analytics创建分区表:https://yq.aliyun.com/articles/624151
- 基于Data Lake Analytics来分析OTS上的数据:https://yq.aliyun.com/articles/618501
- 使用Data Lake Analytics从OSS清洗数据到AnalyticDB:https://yq.aliyun.com/articles/623401
- 使用Data Lake Analytics读/写RDS数据:https://yq.aliyun.com/articles/629046
本文作者:金络
本文为云栖社区原创内容,未经允许不得转载。
如何在Data Lake Analytics中使用临时表的更多相关文章
- Data Lake Analytics中OSS LOCATION的使用说明
前言 Data Lake Analytic(后文简称 DLA)可以帮助用户通过标准的SQL语句直接对存储在OSS.TableStore上的数据进行查询分析. 在查询前,用户需要根据数据文件的格式和内容 ...
- 如何使用Data Lake Analytics创建分区表
前言 Data Lake Analytics(后文简称DLA)提供了无服务化的大数据分析服务,帮助用户通过标准的SQL语句直接对存储在OSS.TableStore上的数据进行查询分析. 在关系型数据库 ...
- Data Lake Analytics的Geospatial分析函数
0. 简介 为满足部分客户在云上做Geometry数据的分析需求,阿里云Data Lake Analytics(以下简称:DLA)支持多种格式的地理空间数据处理函数,符合Open Geospatial ...
- Data Lake Analytics + OSS数据文件格式处理大全
0. 前言 Data Lake Analytics是Serverless化的云上交互式查询分析服务.用户可以使用标准的SQL语句,对存储在OSS.TableStore上的数据无需移动,直接进行查询分析 ...
- Data Lake Analytics,大数据的ETL神器!
0. Data Lake Analytics(简称DLA)介绍 数据湖(Data Lake)是时下大数据行业热门的概念:https://en.wikipedia.org/wiki/Data_lake. ...
- Data Lake Analytics: 使用DataWorks来调度DLA任务
DataWorks作为阿里云上广受欢迎的大数据开发调度服务,最近加入了对于Data Lake Analytics的支持,意味着所有Data Lake Analytics的客户可以获得任务开发.任务依赖 ...
- 使用Data Lake Analytics + OSS分析CSV格式的TPC-H数据集
0. Data Lake Analytics(DLA)简介 关于Data Lake的概念,更多阅读可以参考:https://en.wikipedia.org/wiki/Data_lake 以及AWS和 ...
- Data Lake Analytics账号和权限体系详细介绍
一.Data Lake Analytics介绍 数据湖(Data Lake)是时下大数据行业热门的概念:https://en.wikipedia.org/wiki/Data_lake.基于数据湖做分析 ...
- 使用Data Lake Analytics读/写RDS数据
Data Lake Analytics 作为云上数据处理的枢纽,最近加入了对于RDS(目前支持 MySQL , SQLServer ,Postgres 引擎)的支持, 这篇教程带你玩转 DLA 的 R ...
随机推荐
- pdftk
功能介绍: 如果PDF是一张电子纸,Pdftk就是一个印戳涂抹器.打孔机.浆糊.显影液.和一个X光玻璃.Pdftk是一个简单的PDF万用工具,使用它,你可以:合并PDF文档分割PDF旋转PDF页面解密 ...
- 洛谷P3745 [六省联考2017]期末考试
传送门 题解 //Achen #include<algorithm> #include<iostream> #include<cstring> #include&l ...
- JDK中有关23个经典设计模式的示例
Creational patterns Abstract factory (recognizeable by creational methods returning an abstract/inte ...
- SQLServer-SQLServer2017:安装 SQL Server 的硬件和软件要求
ylbtech-SQLServer-SQLServer2017:安装 SQL Server 的硬件和软件要求 1.返回顶部 1. 安装 SQL Server 的硬件和软件要求 2018/11/06 适 ...
- PipeCAD 简介
PipeCAD 简介 PipeCAD的定位是中小型项目的管道设计软件,主要有管道建模.设备建模以及管道ISO图及平面图功能.程序的操作方式尽量参考PDMS,考虑灵活性.易于使用.如果用来和国内其他管道 ...
- 关于Cocos2d-x多线程异步载入资源的问题
我们通常使用CCSpriteFrameCache::sharedSpriteFrameCache()->addSpriteFramesWithFile("xxx.plist" ...
- openCV 矩阵(图像)操作函数
有很多函数有mask,代表掩码,如果某位mask是0,那么对应的src的那一位就不计算,mask要和矩阵/ROI/的大小相等.大多数函数支持ROI,如果图像ROI被设置,那么只处理ROI部分 少部分函 ...
- Python - 基本数据类型及其常用的方法之字典和布尔值
字典 特点:{"key1": value1, "key2":value2} , 键值对中的值可以为任何数据类型,键不能为列表.字典(无法哈希),布尔值可以为键 ...
- Python学习之列表--自动超市购物车
效果图: 实现代码: menu = [0,5000,500,9000,3000,30,50,7000,70,40]name = [0,"iphone","bicycle& ...
- 垂直对齐:vertical-align属性——使用中注意事项
1.vertical-align(垂直对齐),只对行内元素和单元格元素有效,例如属性为inline和inline-block的元素以及图片.输入表单等都是行内元素; 2.元素默认的垂直对齐方式为基线对 ...