[洛谷P4707] 重返现世
Description
为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙。\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作。
\(Yopilla\) 来到了迷失大陆的核心地域。每个单位时间,这片地域就会随机生成一种原料。每种原料被生成的概率是不同的,第 \(i\) 种原料被生成的概率是 \(\frac{p_i}{m}\) 。如果 \(Yopilla\) 没有这种原料,那么就可以进行收集。
\(Yopilla\) 急于知道,他收集到任意 \(k\) 种原料的期望时间,答案对 998244353 取模。
Input
第一行三个数 \(n,k,m\) 。
第二行 \(n\) 个数 \(p_1, p_2, ..., p_n\) 。
Output
输出一行。
Sample Input
3 3 3
1 1 1
Sample Output
499122182
HINT
对于 \(10 \%\) 的数据,\(p_1 = p_2 = ... = p_m\)
对于另外 \(10 \%\) 的数据,\(k = n\) 。
对于 \(70 \%\) 的数据,\(n \leq 100\)。
对于 \(100 \%\) 的数据,\(1 \leq n \leq 1000\) ,\(1 \leq k \leq n,\) \(| n - k | \leq 10\), \(0 \leq p_i \leq m\) , $ \sum p = m$, \(1 \leq m \leq 10000\) 。
想法
首先,看到“收集”“期望”这种字眼,就套路地想到 \(MIN-MAX\) 容斥
而这道题相当于求第 \(K\) 小的期望收集到的时间,那就是扩展 \(MIN-MAX\) 容斥
鉴于 \(|n-k|\leq 10\) ,不妨令 \(K=n-K+1\) ,改求第 \(K\) 大。
上式子, \(K-MAX(S)=\sum\limits_{T \subseteq S} (^{|T|-1}_{K-1}) \cdot (-1)^{|T|-K} \cdot \frac{m}{\sum\limits_{i \in T} p_i}\)
(证明挺容易的,就是二项式反演,略过……)
发现 \(n\) 好大不能枚举子集,于是考虑 \(dp\) 。
接下来的做法就十分神仙了【划重点】
我们发现 \(m\) 很小,也就是上面式子中 \(\frac{m}{\sum\limits_{i \in T} p_i}\) 的值只有 \(10^5\)种
那考虑合并同类项,把它拎出来,原式写成:
\]
于是我们就用 \(dp\) 搞这个系数。
\(f_{i,j,k}\) 中: \(i\) 表示考虑了前 \(i\) 个数; \(j\) 表示在前 \(i\) 个数中选出了集合 \(T\) ,\(T\) 中所有元素和为 \(j\) ;\(k\) 即求第 \(k\) 大。
转移:
1.对于 \(T\) 中没有第 \(i\) 个数的:贡献是 \(f_{i-1,j,k}\)
2.对于 \(T\) 中有第 \(i\) 个数的:贡献是 \(\sum\limits_{i \in T} (^{|T|-1}_{k-1}) \cdot (-1)^{|T|-k}\),这式中的 \(T\) 满足元素和为 \(j\)
而这个贡献肯定要由 \(f_{i-1,j-p[i],x}\) 转移而来,\(x\) 未知
于是我们把它改写成
\begin{aligned}
&\sum\limits_{T} (^{|T|}_{k-1}) \cdot (-1)^{|T|-k+1} 其中T即为上式T减去i,满足元素和为j-p[i]\\
=&\sum [(^{|T|-1}_{k-1})+(^{|T|-1}_{k-2})] \cdot (-1)^{|T|-k+1} \\
=&\sum (^{|T|-1}_{k-1}) \cdot (-1)^{|T|-k} \cdot (-1) + \sum (^{|T|-1}_{(k-1)-1}) \cdot (-1)^{|T|-k+1} \\
=&-f_{i-1,j-p[i],k}+f_{i-1,j-p[i],k-1}
\end{aligned}
\end{equation*}
\]
综上所述,\(f_{i,j,k}=f_{i-1,j,k}+f_{i-1,j-p[i],k-1}-f_{i-1,j-p[i],k}\)
边界条件 \(f_{0,0,0}=1\)
注意要用滚动数组。
把所有系数求出来后枚举 \(\sum p[i]\)的值 ,带进去求就行了。
代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#define P 998244353
using namespace std;
int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
}
const int N = 1005;
int n,K,m,p[N];
int f[2][N*10][12];
int Pow_mod(int x,int y){
int ret=1;
while(y){
if(y&1) ret=1ll*ret*x%P;
x=1ll*x*x%P;
y>>=1;
}
return ret;
}
int main()
{
n=read(); K=read(); m=read();
K=n-K+1;
for(int i=1;i<=n;i++) p[i]=read();
f[0][0][0]=1;
for(int i=1;i<=n;i++){
int pre=((i-1)&1),id=(i&1);
for(int j=0;j<=m;j++)
for(int k=0;k<=i && k<=K;k++){
f[id][j][k]=f[pre][j][k];
if(j>=p[i] && k)
f[id][j][k]=((f[id][j][k]+f[pre][j-p[i]][k-1])%P+P-f[pre][j-p[i]][k])%P; //手残写成 p[j] ,调了好久
}
}
int ans=0;
for(int i=1;i<=m;i++)
ans=((ans+1ll*m*Pow_mod(i,P-2)%P*f[n&1][i][K]%P)%P+P)%P;
printf("%d\n",ans);
return 0;
}
[洛谷P4707] 重返现世的更多相关文章
- 洛谷 P4707 重返现世
洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...
- 洛谷P4707 重返现世 [DP,min-max容斥]
传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...
- 【题解】洛谷P4707重返现世
在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...
- 洛谷P4707 重返现世(扩展MinMax容斥+dp)
传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...
- 洛谷 P4707 - 重返现世(扩展 Min-Max 容斥+背包)
题面传送门 首先看到这种求形如 \(E(\max(T))\) 的期望题,可以套路地想到 Min-Max 容斥 \(\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T| ...
- 洛谷 P4707 【重返现世】
题目分析 题目就是求第K种原料的出现期望时间. 考虑广义min-max容斥. \(\text{kthmax}(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\bin ...
- Luogu P4707 重返现世
题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...
- Luogu P4707 重返现世 (拓展Min-Max容斥、DP)
题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Ma ...
- P4707 重返现世 扩展 MinMax 容斥+DP
题目传送门 https://www.luogu.org/problem/P4707 题解 很容易想到这是一个 MinMax 容斥的题目. 设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\ ...
随机推荐
- 2019-8-31-git-上传当前分支
title author date CreateTime categories git 上传当前分支 lindexi 2019-08-31 16:55:59 +0800 2018-05-08 09:2 ...
- 关于redux和react-redux使用combinereducers之后的问题
最近用react写项目的时候,开始复习之前学过的redux,记录一下一些坑,以防忘记 我现在的redux目录下有这么些东西 首先是index.js import { createStore } fro ...
- 2019-8-31-dotnet-删除只读文件
title author date CreateTime categories dotnet 删除只读文件 lindexi 2019-08-31 16:55:58 +0800 2019-02-28 1 ...
- Jenkins+Git+Gitlab+Ansible实现持续集成自动化部署静态网站(一)
在之前已经写了关于Git,Gitlab以及Ansible的两篇博客<Git+Gitlab+Ansible剧本实现一键部署Nginx--技术流ken>,<Git+Gitlab+Ansi ...
- SpringBoot Starter机制 - 自定义Starter
目录 前言 1.起源 2.SpringBoot Starter 原理 3.自定义 Starter 3.1 创建 Starter 3.2 测试自定义 Starter 前言 最近在学习Sp ...
- 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)
[题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...
- 【题解】SDOI2015序列统计
[题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...
- 洛谷$P2469\ [SDOI2010]$ 星际竞速 网络流
正解:网络流 解题报告: 传送门$QwQ$ 题目好长昂,,,大概概括下就说有$m$条单向边,$n$个点,每条边有一条边权,每个点有一个点权,然后问每个点都要到达一遍的最小代价是多少$QwQ$? 发现有 ...
- 机器学习——EM算法与GMM算法
目录 最大似然估计 K-means算法 EM算法 GMM算法(实际是高斯混合聚类) 中心思想:①极大似然估计 ②θ=f(θold) 此算法非常老,几乎不会问到,但思想很重要. EM的原理推导还是蛮复杂 ...
- status100到500http响应对应状态解释
1xx-信息提示 这些状态代码表示临时的响应.客户端在收到常规响应之前,应准备接收一个或多个1xx响应. 100-继续. 101-切换协议. 2xx-成功 这类状态代码表明服务器成功地接受了客户端请求 ...