Caffe是纯粹的C++/CUDA架构,支持命令行、Python和MATLAB接口;可以在CPU和GPU直接无缝切换:

Caffe::set_mode(Caffe::GPU);

Caffe的优势

1、上手快:模型与相应优化都是以文本形式而非代码形式给出

  Caffe给出了模型的定义、最优化设置以及预训练的权重,方便立即上手。

2、速度快:能够运行最棒的模型与海量的数据。

  Caffe与cuDNN结合使用,测试AlexNet模型,在K40上处理每张图片只需要1.17ms.

3、模块化:方便扩展到新的任务和设置上。

  可以使用Caffe提供的各层类型来定义自己的模型。

4、开放性:公开的代码和参考模型用于再现。

5、社区好:可以通过BSD-2参与开发与讨论。

Caffe的网络定义

Caffe中的网络都是有向无环图的集合,可以直接定义:

name: "dummy-net"
layers {<span><span>name: <span>"data" …</span></span></span>}
layers {<span><span>name: <span>"conv" …</span></span></span>}
layers {<span><span>name: <span>"pool" …</span></span></span>}
layers {<span><span>name: <span>"loss" …</span></span></span>}

数据及其导数以blobs的形式在层间流动。

Caffe的各层定义

Caffe层的定义由2部分组成:层属性与层参数,例如

name:"conv1"
type:CONVOLUTION
bottom:"data"
top:"conv1"
convolution_param{
num_output:<span>
kernel_size:
stride:
weight_filler{
type: "<span style="color: #c0504d;">xavier</span>"
}
}

这段配置文件的前4行是层属性,定义了层名称、层类型以及层连接结构(输入blob和输出blob);而后半部分是各种层参数。

Blob

Blob是用以存储数据的4维数组,例如

对于数据:Number*Channel*Height*Width
对于卷积权重:Output*Input*Height*Width
对于卷积偏置:Output***

训练网络

网络参数的定义也非常方便,可以随意设置相应参数。

甚至调用GPU运算只需要写一句话:

solver_mode:GPU

参考博客:https://www.csdn.net/article/2015-01-22/2823663

参考博客:https://blog.csdn.net/qq_26898461/article/details/50454804

Caffe 笔记 (一)caffe的层与数据结构的更多相关文章

  1. caffe笔记

    1. 训练    cifar10 示例 ① cd caffe.1.0.0 ./data/cifar10/get_cifar10.sh    #获取图片 ② ./examples/cifar10/cre ...

  2. c++ caffe 输出 activation map 、 层参数

    python输出activation map与层参数:https://blog.csdn.net/tina_ttl/article/details/51033660 caffe::Net文档: htt ...

  3. 【神经网络与深度学习】如何在Caffe中配置每一个层的结构

    如何在Caffe中配置每一个层的结构 最近刚在电脑上装好Caffe,由于神经网络中有不同的层结构,不同类型的层又有不同的参数,所有就根据Caffe官网的说明文档做了一个简单的总结. 1. Vision ...

  4. 图解 TCP/IP 第六章 TCP与UDP 笔记6.1 传输层的作用

     图解 TCP/IP  第六章 TCP与UDP   笔记6.1 传输层的作用   传输层必须指出这个具体的程序,为了实现这一功能,使用端口号这样一种识别码.根据端口号,就可以识别在传输层上一层的应用程 ...

  5. 【撸码caffe 三】 caffe.cpp

    caffe.cpp文件完成对网络模型以及模型配置参数的读入和提取,提供了网络模型训练的入口函数train和对模型的测试入口函数test.文件中使用了很多gflags和glog指令,gflags是goo ...

  6. 【caffe Blob】caffe中与Blob相关的代码注释、使用举例

    首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include < ...

  7. 未定义变量 "caffe" 或类 "caffe.reset_all"

    配置caffe后在matlab中测试报错. 未定义变量 "caffe" 或类 "caffe.reset_all". 我的原因是:caffe在matlab接口处没 ...

  8. Intel Caffe 与原生Caffe

    1.  首先安装好docker,拉取intel caffe image: $ docker pull bvlc/caffe:intel 试着运行: $ docker run -it bvlc/caff ...

  9. CNN学习笔记:全连接层

    CNN学习笔记:全连接层 全连接层 全连接层在整个网络卷积神经网络中起到“分类器”的作用.如果说卷积层.池化层和激活函数等操作是将原始数据映射到隐层特征空间的话,全连接层则起到将学到的特征表示映射到样 ...

  10. CNN学习笔记:池化层

    CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见 ...

随机推荐

  1. vue.js中使用离线检测

    Html5在window.navigator对象上添加了一个属性onLine 返回布尔值 true表示在线.同时新增了两个事件: window.addEventListener('online', f ...

  2. Abp的swagger UI 出现Failed to load API definition.

    Abp 出现Failed to load API definition.如下图: 原因:本次出现的原因是Api里面的方法重名了(只是方法的参数不一样)(可能是controller中的auction上面 ...

  3. 如何架构一个 React 项目?

    编程有点像搞园艺.比起竭力去对付BUG(虫子),我们更愿意把一切弄得整洁有序,以免最后落得个身在荒野丛林中.低劣的架构会拖我们的后腿,也会使得BUG更容易钻进系统里去. 想要对你的项目进行架构,方法有 ...

  4. Pandownload---windows下几乎无敌的网盘下载神器

    近几天光顾着mac了,今天咱来聊聊Windows. 这个就不多说了,直接贴图. 网页版截图. 电脑版截图. 网页版2020.2.1的时候是失效的,别问我为什么不现在测试,用不着. 不用担心不知道密码, ...

  5. .NET知识梳理——4.特性Attribute

    1. 特性 1.1        特性Attribute 特性就是一个类,继承自Attribute抽象类(该类无抽象方法.避免实例化),约定俗成用Attribute类结尾,标记时可省略掉Attribu ...

  6. JS高级---识别正则表达式是否匹配

    识别正则表达式是否匹配 console.log(/[a-zA-Z]+/.test("hello")); console.log(/./.test("除了回车换行以为的任意 ...

  7. git merge代码

    把主干合并进分支 git checkout branch git merge origin/master [一开始我使用的是git merge master,提交代码后发现主干和分支还是有差异,如果不 ...

  8. MySQL登录和退出

    登录必须保证服务是启动的(否则有权限有身份也进不来)进入仓库(数据库)前,有身份验证.需要有权限和密码 (用户名密码) 登录的方式一 通过MySQL自带的客户端 Command Line Client ...

  9. Linux下Libevent安装和简单实用

    前言 Libevent 是一个用C语言编写的.轻量级的开源高性能事件通知库,主要有以下几个亮点:事件驱动( event-driven),高性能;轻量级,专注于网络,不如 ACE 那么臃肿庞大:源代码相 ...

  10. HDU 1542 Atlantis(扫描线算法)

    题意:给出n个矩形的左下角左边和右上角坐标,求这n个矩形的面积并 原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 典型的扫描线算法的题目 什么是 ...