题意:给你n个元素的数组a。你可以在每个元素之前添加and和or的符号。每次询问最后变成r有多少种添号情况。

n<=1000,m<=5000,q<=1000.

标程:

 #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int mod=1e9+;
const int N=;
typedef long long ll;
int n,m,q,bin[N],tmp[N],rnk[N],bit[],a[N],sum[N];
int read()
{
int x=;char ch=getchar();
while (ch<''||ch>'') ch=getchar();
while (ch>=''&&ch<='') {x=(x<<)+(x<<)+ch-'';break;}
return x;
}
int main()
{
scanf("%d%d%d",&n,&m,&q);
bin[]=;
for (int i=;i<=m;i++) rnk[i]=i;
for (int i=;i<=n;i++) bin[i]=(ll)bin[i-]*%mod;
for (int i=;i<=n;i++)
{
bit[]=bit[]=;
for (int j=;j<=m;j++) bit[a[j]=read()]++,sum[j]=((ll)sum[j]+(ll)bin[i-]*a[j]%mod)%mod;
bit[]+=bit[];
for (int j=m;j>=;j--) tmp[bit[a[rnk[j]]]--]=rnk[j];
swap(tmp,rnk);
}
reverse(rnk+,rnk+m+);
while (q--)
{
for (int i=;i<=m;i++) a[i]=read();
int mx=,mn=m+;
for (int i=;i<=m;i++)
if (a[rnk[i]]==) mn=min(mn,i);else mx=max(mx,i);
if (mx>mn) {puts("");continue;}
int sum1=(rnk[mx]==)?bin[n]:sum[rnk[mx]],//注意运算符二进制的长度为n
sum2=(rnk[mn]==)?:sum[rnk[mn]];
printf("%d\n",((ll)sum1-sum2+mod)%mod);
}
return ;
}

易错点:1.注意运算符二进制的长度为n。bin要处理到2^n。

题解:计数排序+性质/从后往前推+bitset

bitset的做法:我们从后往前考虑,由最后一个数An和Ans可以推得前n-1个数的运算和x。

枚举该位之前填&还是|,每一位有八种情况:

x&1=1  x=1

x&1=0  x=0

x&0=1  无解,直接跳出

x&0=0  ?任意

x|1=1  ?任意

x|0=1  x=1

x|1=0  无解,直接跳出

x|0=0  x=0

无解不考虑,返回0。

我们发现非任意的和Ans的答案是一样的,所以不用保存,只用bitset维护一样哪几个是?即可(这个可以自定义运算求)。如果都是?,那么接下来就没有限制了,返回2的若干次。

但是枚举&和|,复杂度真的是对的吗?如果某一位相异,那么运算符唯一确定。反之是所有位相同的情况,得到的一定是111???,000???的这种形式。

接下来如果同样所有位相同,以111???为例,推出来x要么全是?,直接返回,要么仍是全1,相当于也变成了唯一确定的状态。

所以不能唯一确定的只有一次。好像会卡一点,手写bitset较宜。

时间复杂度O(nmq/w)。

出题人给的解法:

设x为符号的二进制表示第i个数之前的符号如果是and,x[i]=1,反之x[i]=0。

对于给出数列的每一位统计bi,第n个数的第i位是作为bi的最高位。

容易发现,当x<bi时,最后答案的第i位应该是1,反之为0。

那么对于每一个询问数,就可以列出关于x的不等式了。最后算出解区间中有多少个数即可。

时间复杂度O(mq)。

loj2494 [hnoi2018]寻宝游戏的更多相关文章

  1. 【BZOJ5285】[HNOI2018]寻宝游戏(神仙题)

    [BZOJ5285][HNOI2018]寻宝游戏(神仙题) 题面 BZOJ 洛谷 题解 既然是二进制按位的运算,显然按位考虑. 发现这样一个关系,如果是\(or\)的话,只要\(or\ 1\),那么无 ...

  2. 5285: [Hnoi2018]寻宝游戏

    5285: [Hnoi2018]寻宝游戏 链接 分析: 从下面依次确定运算符号,然后在确定的过程中,需要确定的位数会逐渐减少.比如最后有一个1,如果在从下往上确定了一个or 1,那么再往前可以随便选了 ...

  3. BZOJ.5285.[AHOI/HNOI2018]寻宝游戏(思路 按位计算 基数排序..)

    BZOJ LOJ 洛谷 话说vae去年的专辑就叫寻宝游戏诶 只有我去搜Mystery Hunt和infinite corridor了吗... 同样按位考虑,假设\(m=1\). 我们要在一堆\(01\ ...

  4. bzoj 5285: [Hnoi2018]寻宝游戏

    Description Solution 把输入的 \(n\) 个二进制数看作一个大小为 \(n*m\) 的矩阵 把每一列压成一个二进制数,其中最高位是最下面的元素 然后就有了 \(m\) 个二进制数 ...

  5. HNOI2018寻宝游戏

    https://www.luogu.org/problemnew/show/P4424 题解 我们首先按位考虑. 如果有一位最终的结果为1,那么我们可以把树的序列看成一个二进制数,先出现的在底位,后出 ...

  6. bzoj千题计划310:bzoj5285: [Hnoi2018]寻宝游戏(思维题+哈希)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 |0 和 &1 没有影响 若填‘|’,记为0,若填‘&’,记为1 先只考虑最 ...

  7. [HNOI2018]寻宝游戏

    Description: 给出\(n\)个长为\(m\)的01串,第0个为0,同时给出\(q\)个询问串,每次向其中添加\(n\)个\(\&\)或\(|\)符号,求使这些串按顺序运算得到询问串 ...

  8. 【比赛】HNOI2018 寻宝游戏

    考试的时候就拿了30points滚粗了 听说myy对这题的倒推做法很无奈,官方题解在此 正解思路真的很巧妙,也说的很清楚了 就是分别考虑每一位,会发现题解中的那个性质,然后把询问的二进制数按照排序后的 ...

  9. [HNOI2018]寻宝游戏(题解转载自别处)

    题解(自别处转载): Luogu CSDN 这题关键是将运算符也替换成0,1 然后在运算符与原串混杂里找规律. 而且替换的方式也有所要求,考场上两种替换方式都要尝试. #include <bit ...

随机推荐

  1. Codeforces 1182A Filling Shapes

    题目链接:http://codeforces.com/problemset/problem/1182/A 思路:n为奇数时不可能完全填充,ans = 0.发现若要完全填充,每俩列可产生俩种情况,所以为 ...

  2. linux mysql udf 提权

    连接远程数据库 查看插件库路径 show variables like '%plugin%'; 写入udf库到插件目录: 32位: select unhex('7F454C46020101000000 ...

  3. Vue项目的配置项

    目录 Vue项目的配置项 配置项 加载全局css文件 加载全局js文件 store仓库的配置和简单用法 BootStrap环境和jQuery的配置 前端后端交互(CORS问题) axios配置项(前端 ...

  4. Crane /// 向量旋转+线段树

    题目大意: 给定n条首尾相接的线段的长度 第一条从0,0开始,所有线段垂直与x轴向上延伸 给定c次操作 每次操作给定 s,a 使得 由第s条线段的角度 逆时针旋转a后 达到第s+1条线段的角度 每次操 ...

  5. Linux ls 命令实现(简化版)

    在学习linux系统编程的时候,实现了ls命令的简化版本号. 实现的功能例如以下: 1. 每种文件类型有自己的颜色 (- 普通文件, d 文件夹文件, l 链接文件. c 字符设备文件. b 快设备文 ...

  6. 【转】Java程序CPU飙升问题排查方法

    windows环境下cpu飙升问题 线上某台runtime机器(windows Server)cpu报警,这种情况初步就是代码里面死循环了,先把机器下线了保证不再有新的任务分配进来,然而cpu使用依然 ...

  7. moment 获取当前月日历

    获取当前月日历 <template> <div id="calendar"> <div class="top">{{date ...

  8. C 终端输入 字符123 输出 10进制123

    #include <stdio.h> #define N 20 int main(int argc, const char *argv[]) { char a[N] = {'\0'}; i ...

  9. nodejs . module.exports

    //utils.js let a = 100; console.log(module.exports); //能打印出结果为:{} console.log(exports); //能打印出结果为:{} ...

  10. 6_再次开中断STI的正确姿势

    1 直接开启sti --蓝屏 2 配置环境 正确开启sti 中断 kpcr -- 很多重要线程切换的数据.结构 进入内核的时候 fs 不再是teb/tib: 是kpcr. 同时观察 kifastcal ...