题目链接:K小数查询

题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种:

  • 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$
  • 输入$x,y,k$,表示询问区间$[x,y]$中的第$k$小数

思路:数据范围不是很大,可以分块来做,记录每个块已经更新过的最小值$imin[]$,询问时二分答案,然后求出$[x,y]$区间中小于等于$mid$的数的个数$cnt$,通过判断$cnt$与$k$的大小来改变$l,r$即可

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <cmath> using namespace std; const int N = ;
const int INF = 0x3f3f3f3f; int block, belong[N], num, l[N], r[N], imin[N];
int n, m, a[N];
vector<int> v[N]; void build()
{
block = sqrt(n);
num = n / block;
if (n % block) num++;
for (int i = ; i <= num; i++)
l[i] = (i - ) * block + , r[i] = i * block;
r[num] = n;
for (int i = ; i <= n; i++)
belong[i] = (i - ) / block + ;
for (int i = ; i <= num; i++) {
imin[i] = INF;
for (int j = l[i]; j <= r[i]; j++)
v[i].push_back(a[j]);
sort(v[i].begin(), v[i].end());
}
} void reset(int x)
{
v[x].clear();
for (int i = l[x]; i <= r[x]; i++) {
a[i] = min(a[i], imin[x]);
v[x].push_back(a[i]);
}
sort(v[x].begin(), v[x].end());
} void update(int x, int y, int c)
{
int bl = belong[x], br = belong[y];
if (bl == br) {
for (int i = x; i <= y; i++)
a[i] = min(a[i], c);
reset(bl);
return;
}
for (int i = x; i <= r[bl]; i++)
a[i] = min(a[i], c);
reset(bl);
for (int i = l[br]; i <= y; i++)
a[i] = min(a[i], c);
reset(br);
for (int i = bl + ; i < br; i++)
imin[i] = min(imin[i], c);
} int query(int x, int y, int c)
{
int bl = belong[x], br = belong[y], cnt = ;
if (bl == br) {
for (int i = x; i <= y; i++)
if (a[i] <= c || imin[bl] <= c) cnt++;
return cnt;
}
for (int i = x; i <= r[bl]; i++)
if (a[i] <= c || imin[bl] <= c) cnt++;
for (int i = l[br]; i <= y; i++)
if (a[i] <= c || imin[br] <= c) cnt++;
for (int i = bl + ; i < br; i++)
if (imin[i] <= c) cnt = cnt + r[i] - l[i] + ;
else cnt = cnt + upper_bound(v[i].begin(), v[i].end(), c) - v[i].begin();
return cnt;
} int ask(int x, int y, int k)
{
int l = -, r = ;
while (l < r) {
int mid = (l + r) / ;
if (query(x, y, mid) >= k) r = mid;
else l = mid + ;
}
return l;
} int main()
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++)
scanf("%d", &a[i]);
build();
for (int i = ; i <= m; i++) {
int kd, x, y, c;
scanf("%d%d%d%d", &kd, &x, &y, &c);
if ( == kd) update(x, y, c);
else printf("%d\n", ask(x, y, c));
}
return ;
}

2020 CCPC Wannafly Winter Camp Day1 - I. K小数查询(分块)的更多相关文章

  1. 2020 CCPC Wannafly Winter Camp Day1 C. 染色图

    2020 CCPC Wannafly Winter Camp Day1 C. 染色图 定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任 ...

  2. 2020 CCPC Wannafly Winter Camp Day1 Div.1&amp F

    #include<bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) #define fore(i, ...

  3. 2020 CCPC Wannafly Winter Camp Day1-F-乘法

    题目传送门 sol:二分答案$K$,算大于$K$的乘积有多少个.关键在于怎么算这个个数,官方题解上给出的复杂度是$O(nlogn)$,那么计算个数的复杂度是$O(n)$的.感觉写着有点困难,自己写了一 ...

  4. 2020 CCPC Wannafly Winter Camp Day2-K-破忒头的匿名信

    题目传送门 sol:先通过AC自动机构建字典,用$dp[i]$表示长串前$i$位的最小代价,若有一个单词$s$是长串的前$i$项的后缀,那么可以用$dp[i - len(s)] + val(s)$转移 ...

  5. Wannafly Camp 2020 Day 1I K小数查询 - 分块

    给你一个长度为\(n\)序列\(A\),有\(m\)个操作,操作分为两种: 输入\(x,y,c\),表示对\(i\in[x,y]\),令\(A_{i}=min(A_{i},c)\) 输入\(x,y,k ...

  6. CCPC Wannafly Winter Camp Div2 部分题解

    Day 1, Div 2, Prob. B - 吃豆豆 题目大意 wls有一个\(n\)行\(m\)列的棋盘,对于第\(i\)行第\(j\)列的格子,每过\(T[i][j]\)秒会在上面出现一个糖果, ...

  7. 2019 wannafly winter camp

    2019 wannafly winter camp Name Rank Solved A B C D E F G H I J K day1 9 5/11 O O O O O day2 5 3/11 O ...

  8. 2019 wannafly winter camp day 3

    2019 wannafly winter camp day 3 J 操作S等价于将S串取反,然后依次遍历取反后的串,每次加入新字符a,当前的串是T,那么这次操作之后的串就是TaT.这是第一次转化. 涉 ...

  9. Wannafly Winter Camp 2020 Day 6J K重排列 - dp

    求 \(K\) 是多少个 \(n\) 元置换的周期.\(T\leq 100, n\leq 50, K \leq 10^{18}\) Solution 置换可以被试做若干个环组成的有向图,于是考虑 dp ...

随机推荐

  1. 【Python】字符串处理方法

  2. pycharm项目移植过程中遇到的问题

     调试中遇到三个问题: 问题1:Error running 'run_all_test': Cannot run program "C:\Users\Administrator\.virtu ...

  3. grunt里面将es6转为es5,遇到的坑

    今天看了一下grunt的官方文档,就按照教程来自己创建一个demo,发现grunt要把es6转化为es5需要安装babel,然后就按照grunt-babel的文档进行了一系列操作,等我要兴致勃勃的运行 ...

  4. SpringCloud Netflix Hystrix

    Hystrix的一些概念 Hystrix是一个容错框架,可以有效停止服务依赖出故障造成的级联故障. 和eureka.ribbon.feign一样,也是Netflix家的开源框架,已被SpringClo ...

  5. spring(四):IoC初始化流程&BeanDefinition加载注册

    ApplicationContext context = new ClassPathXmlApplicationContext("hello.xml"); /** * * @par ...

  6. C++-POJ2155-Matrix[数据结构][树状数组]

    二维树状数组+叉分 区间修改转化为单点修改 单点查询本来就可视为区间查询 于是本题可解 PS:不知道为什么函数传参数,传的是变量就会出现奇奇怪怪的问题? 所以读入单独写了,还有就是循环的初始化硬是多定 ...

  7. HTML5-语义化

    什么是语义化?就是用合理.正确的标签来展示内容,比如h1~h6定义标题. 语义化优点: 易于用户阅读,样式丢失的时候能让页面呈现清晰的结构. 有利于SEO,搜索引擎根据标签来确定上下文和各个关键字的权 ...

  8. goahead 流程

    原文:https://blog.csdn.net/qq_32419007/article/details/80756643 1.全局变量 Web服务器的根目录 static char_t        ...

  9. Unity相机鼠标基本控制

    一.滚轮控制视角缩放 /// <summary> /// 滚轮控制相机视角缩放 /// </summary> public void CameraFOV() { //获取鼠标滚 ...

  10. Linux服务器上实现数据库和图片文件的定时备份

    一. 1.首先创建一个目录,用于存放备份的数据   2.在该目录下创建两个子目录一个用于存放数据库的信息,一个用于存放图片资源       3.#数据库的备份 执行下面的命令    mysqldump ...