Linux内核源码阅读记录一之分析存储在不同段中的函数调用过程
在写驱动的过程中,对于入口函数与出口函数我们会用一句话来修饰他们:module_init与module_exit,那会什么经过修饰后,内核就能狗调用我们编写的入口函数与出口函数呢?下面就来分析内核调用module_init的过程(这里暂时分析编译进内核的模块,不涉及动态加载的模块),以这个过程为例子来了解内核对于不同段的函数的调用过程。
下面从内核的start_kernel函数开始分析,下面是调用过程:
start_kernel
rest_init
kernel_init
do_basic_setup
do_initcalls()
直接看到do_initcalls函数,看到第6行的for循环,它从__initcall_start开始到__initcall_end结束,调用在这区间内的函数,那么这些函数在哪里定义的呢?
static void __init do_initcalls(void)
{
initcall_t *call;
int count = preempt_count(); for (call = __initcall_start; call < __initcall_end; call++) {/* 调用__initcall_start到__initcall_end内的函数*/
ktime_t t0, t1, delta;
char *msg = NULL;
char msgbuf[];
int result; if (initcall_debug) {
printk("Calling initcall 0x%p", *call);
print_fn_descriptor_symbol(": %s()",
(unsigned long) *call);
printk("\n");
t0 = ktime_get();
} result = (*call)(); if (initcall_debug) {
t1 = ktime_get();
delta = ktime_sub(t1, t0); printk("initcall 0x%p", *call);
print_fn_descriptor_symbol(": %s()",
(unsigned long) *call);
printk(" returned %d.\n", result); printk("initcall 0x%p ran for %Ld msecs: ",
*call, (unsigned long long)delta.tv64 >> );
print_fn_descriptor_symbol("%s()\n",
(unsigned long) *call);
} if (result && result != -ENODEV && initcall_debug) {
sprintf(msgbuf, "error code %d", result);
msg = msgbuf;
}
if (preempt_count() != count) {
msg = "preemption imbalance";
preempt_count() = count;
}
if (irqs_disabled()) {
msg = "disabled interrupts";
local_irq_enable();
}
if (msg) {
printk(KERN_WARNING "initcall at 0x%p", *call);
print_fn_descriptor_symbol(": %s()",
(unsigned long) *call);
printk(": returned with %s\n", msg);
}
} /* Make sure there is no pending stuff from the initcall sequence */
flush_scheduled_work();
}
继续往下看,我们搜索整个内核源码,发现找不到__initcall_start与__initcall_end的定义,其实这两个变量被定义在arch/arm/kernel/vmlinux.lds中,它是在内核编译的时候生成的,是整个内核源码的链接脚本,我们把关键部分代码抽出来。可以看到在__initcall_start与__initcall_end之间又被分成了许多段:从*(.initcall0.init) ~*(.initcall7s.init)。
.init : { /* Init code and data */
*(.init.text)
_einittext = .;
__proc_info_begin = .;
*(.proc.info.init)
__proc_info_end = .;
__arch_info_begin = .;
*(.arch.info.init)
__arch_info_end = .;
__tagtable_begin = .;
*(.taglist.init)
__tagtable_end = .;
. = ALIGN();
__setup_start = .;
*(.init.setup)
__setup_end = .;
__early_begin = .;
*(.early_param.init)
__early_end = .;
__initcall_start = .;
*(.initcall0.init) *(.initcall0s.init) *(.initcall1.init) *(.initcall1s.init) *(.initcall2.init) *(.initcall2s.init) *(.initcall3.init) *(.initcall3s.init) *(.initcall4.init) *(.initcall4s.init) *(.initcall5.init) *(.initcall5s.init) *(.initcallrootfs.init) *(.initcall6.init) *(.initcall6s.init) *(.initcall7.init) *(.initcall7s.init)
__initcall_end = .;
__con_initcall_start = .;
*(.con_initcall.init)
__con_initcall_end = .;
__security_initcall_start = .;
*(.security_initcall.init)
__security_initcall_end = .; . = ALIGN();
__initramfs_start = .;
usr/built-in.o(.init.ramfs)
__initramfs_end = .; . = ALIGN();
__per_cpu_start = .;
*(.data.percpu)
__per_cpu_end = .; __init_begin = _stext;
*(.init.data)
. = ALIGN();
__init_end = .; }
分析到这里,我们回过头再继续看module_init的定义,它被定义在include\linux\init.h中:
#define module_init(x) __initcall(x); #define __initcall(fn) device_initcall(fn) #define device_initcall(fn) __define_initcall("6",fn,6) #define __define_initcall(level,fn,id) \
static initcall_t __initcall_##fn##id __attribute_used__ \
__attribute__((__section__(".initcall" level ".init"))) = fn
typedef int (*initcall_t)(void);
根据以上定义,最终把module_init展开可以得到:这句话的意思就是只要调用module_init(x),就把x定义为initcall_t类型的函数,并且这个函数函数名为__initcall_x6,它被存放在.initcall6.init中,而这个段正好位于__initcall_start与__initcall_end之间。所以它被内核调用的时机就是在do_initcalls函数的for循环中。
#define module_init(x) static initcall_t __initcall_x6 __attribute_used__ __attribute__((__section__(".initcall" 6 ".init"))) = x
对于其他的段,也是类似的,内核会在某个地方利用for循环而调用到在其他地方所定义的段。
Linux内核源码阅读记录一之分析存储在不同段中的函数调用过程的更多相关文章
- ubuntu下linux内核源码阅读工具和调试方法总结
http://blog.chinaunix.net/uid-20940095-id-66148.html 一 linux内核源码阅读工具 windows下当然首选source insight, 但是l ...
- linux内核源码阅读之facebook硬盘加速利器flashcache
从来没有写过源码阅读,这种感觉越来越强烈,虽然劣于文笔,但还是下定决心认真写一回. 源代码下载请参见上一篇flashcache之我见 http://blog.csdn.net/liumangxiong ...
- linux内核源码阅读之facebook硬盘加速flashcache之八
前面我们的分析中重点关注正常的数据流程,这一小节关注如果有异常,那么流程是怎么走完的呢? 1)创建新任务时kcached_job申请不到 2)读写命中时cache块为忙 3)系统关机时处理,系统开机时 ...
- linux内核源码阅读之facebook硬盘加速flashcache之三
上一节讲到在刷缓存的时候会调用new_kcahed_job创建kcached_job,由此我们也可以看到cache数据块与磁盘数据的对应关系.上一篇:http://blog.csdn.net/lium ...
- linux内核源码阅读之facebook硬盘加速flashcache之六
其实到目前为止,如果对读流程已经能轻松地看懂了,那么写流程不需要太多脑细胞.我觉得再写下去没有太大的必要了,后面想想为了保持flashcache完整性,还是写出来吧.接着到写流程: 1530stati ...
- linux内核源码阅读之facebook硬盘加速flashcache之四
这一小节介绍一下flashcache读写入口和读写的基础实现. 首先,不管是模块还是程序,必须先找到入口,用户态代码会经常去先看main函数,内核看module_init,同样看IO流时候也要找到入口 ...
- linux内核源码阅读之facebook硬盘加速flashcache之二
flashcache数据结构都在flashcache.h文件中,但在看数据结构之前,需要先过一遍flashcache是什么,要完成哪些功能?如果是自己设计这样一个系统的话,大概要怎么设计. 前面讲过, ...
- linux内核源码阅读之facebook硬盘加速flashcache之五
正常流程到flashcache_map的1623行或1625行,按顺序先看读流程: 1221static void 1222flashcache_read(struct cache_c *dmc, s ...
- Linux内核源码分析
Linux源码下载: https://www.kernel.org/ https://git.kernel.org/ Linux内核源码阅读以及工具(转): https://blog.csdn.net ...
随机推荐
- Photoshop Elements2020强势来袭,教你三秒钟拯救闭眼照
Photoshop Elements2020强势来袭,一系列的黑科技让设计师和路人都惊叹不已!若某人的闭眼成为一张集体照的败笔,那该如何挽回? 想要挽救闭眼照?听起来很高大上,很困难?不,Photos ...
- Jquery开发电商网站实战(带源码)
组件化思想,包含: 下拉菜单项封装 + 按需加载 搜索功能组件化,显示数据 + 下拉显示 + 缓存 分类导航按需加载 幻灯片效果组件封装及按需加载 商品楼层模块组件化 + 商品数据按需加载 + Tab ...
- Dom中的一些接口
节点都是单个对象,有时需要一种数据结构,能够容纳多个节点.DOM 提供两种节点集合,用于容纳多个节点:NodeList和HTMLCollection.这两种集合都属于接口规范.许多 DOM 属性和方法 ...
- oracle卸载步骤
一.删除产品 1. 停服务,进入下图,一个个删除Oracle产品,再执行卸载 二.清注册表,开始-搜索- 输入regedit,进入注册表 1.选择HKEY_LOCAL_MACHINE\SOFTWARE ...
- beego控制器介绍
控制器介绍 提示:在 v1.6 中,此文档所涉及的 API 有重大变更,this.ServeJson() 更改为 this.ServeJSON(),this.TplNames 更改为 this.Tpl ...
- Centos 安装SVN
Centos 安装SVN centos(我这里使用的是CentOS7)下yum命令即可方便的完成安装 $ sudo yum install subversion 测试安装是否成功: $ svnser ...
- 双 leave 栈迁移的坑
目录 简介 问题 解决办法 简介 之前在复现自己做出来的题时,一样的思路发现拿不了 shell 了,后来发现是栈迁移的坑. 问题 假设 32 位系统中,漏洞函数可以任意写入 0x0000000 ...
- H5_0011:JS动态创建html并设置CSS属性
1,创建html文本,并设置指定css样式 r = function(e) { var t = document.createElement("div"); t.innerHTML ...
- C++中public、protected、private的区别(转载)
转载:https://blog.csdn.net/vanturman/article/details/79393317 首先记住一点:派生类能且只能访问基类的public和protected成员! ...
- css权重及计算
一.一般而言:!important--->行间样式--->id--->class | 属性--->标签选择器--->通配符 二.权重值 !important ...