@description@

给定一个 N 个点的有向带权图,从 0 编号到 N - 1。一开始这张图有 N - 1 条边,第 i 条边连接点 i 与点 i+1,边权为 0。

接着往这张图加边:对于每一对 (i, j)(i ≠ j),连 i -> j,当 i < j 时边权为 -1;否则边权为 1。

我们想要删掉一些边 (i, j)(i ≠ j),使得这张图不存在负环。删掉边 (i, j) 的费用为 A(i, j)。

请找到最小的删边费用,使得图中不存在负环。只能删之后加的边。

Constraints

3≤N≤500

1≤A(i, j)≤10^9

所有数都为整数。

Input

输入的格式如下:

N

A0,1 A0,2 A0,3 ⋯ A0,N−1

A1,0 A1,2 A1,3 ⋯ A1,N−1

A2,0 A2,1 A2,3 ⋯ A2,N−1



AN−1,0 AN−1,1 AN−1,2 ⋯ AN−1,N−2

Output

输出最小的删边费用。

Sample Input 1

3

2 1

1 4

3 3

Sample Output 1

2

Sample Input 2

4

1 1 1

1 1 1

1 1 1

1 1 1

Sample Output 2

2

@solution@

“感觉就是凑巧想到了这个做法,觉得有点道理于是逆向出了一道题。”——By lsk。

如果没有负环,意味着最短路存在。我们就从最短路出发来思考。

最短路有一个很经典的结论:三角形不等式。即对于任意一条边权为 w 的边 (u, v) 始终有 dis[u] + w >= dis[v]。

因此我们再从三角形不等式出发,进一步剖析这道题。

令最终的图中 0 号点到第 i 个点的距离为 dis[i]。因为边权为 0 的边存在,所以有 dis[i] >= dis[i+1]。其中还有 dis[0] = 0。

对于 i->j (i < j) 的边,有 dis[i] - 1 >= dis[j];对于 i->j (i > j) 的边,有 dis[i] + 1 >= dis[j]。

由于 dis 应该是满足三角形不等式的最大值,在没有负环的情况下有 dis[i] - 1 <= dis[i+1]。

注意到上面的不等式都是在 dis[i] 与 dis[i+1] 之间建立的,我们可以考虑差分:令 p[i] = dis[i] - dis[i + 1](注意不是 dis[i+1] - dis[i]),则有 0 <= p[i] <= 1。

对于 i->j (i < j) 的边,应该满足 \(\sum_{k=i}^{j-1}p[k] \ge 1\);对于 i->j (i > j) 的边,应该满足 \(\sum_{k=j}^{i-1}p[k] \le 1\)。这个可以根据上面的三角形不等式推导得到。

即:一个需要区间内至少包含 1 个 1,一个需要区间内最多包含 1 个 1。

然后我们就可以对这个 p 进行 dp 了。设 dp[i][j][k] 表示处理完前 i 位,往前数第 1 个 1 在 j 位置,第 2 个 1 在 k 位置。

转移时枚举第 i + 1 位填 0 还是填 1 即可。第一维显然可以滚动掉。

时间复杂度 O(n^3)。

@accepted code@

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 500;
const ll INF = ll(1E18);
int A[MAXN + 5][MAXN + 5], B[MAXN + 5][MAXN + 5], n;
// A[i][j] -> (p[i] + p[i+1] + ... p[j] >= 1) (i <= j)
// B[i][j] -> (p[i] + p[i+1] + ... p[j] <= 1) (i <= j)
ll SA[MAXN + 5][MAXN + 5], SB[MAXN + 5][MAXN + 5];
// SA[i][j] -> A[1][j] + A[2][j] + ... + A[i][j]
// SB[i][j] -> B[1][j] + B[2][j] + ... + B[i][j]
ll dp[2][MAXN + 5][MAXN + 5], f[2][MAXN + 5], g[2];
int main() {
scanf("%d", &n);
for(int i=1;i<=n;i++) {
for(int j=1;j<=i-1;j++) scanf("%d", &B[j][i-1]); // i -> j (i > j)
for(int j=i+1;j<=n;j++) scanf("%d", &A[i][j-1]);
}
for(int j=1;j<=n;j++)
for(int i=1;i<=n;i++)
SA[i][j] = A[i][j] + SA[i-1][j], SB[i][j] = B[i][j] + SB[i-1][j];
n--;
for(int j=1;j<=n;j++) {
for(int k=j+1;k<=n;k++)
dp[0][j][k] = INF;
f[0][j] = INF;
}
g[0] = 0;
for(int i=1;i<=n;i++) {
for(int j=1;j<i;j++) {
for(int k=j+1;k<i;k++)
dp[1][j][k] = dp[0][j][k], dp[0][j][k] = INF;
f[1][j] = f[0][j], f[0][j] = INF;
}
g[1] = g[0], g[0] = INF;
for(int j=1;j<i;j++) {
for(int k=j+1;k<i;k++) {
dp[0][j][k] = min(dp[0][j][k], dp[1][j][k] + SA[i][i] - SA[k][i] + SB[j][i]);
dp[0][k][i] = min(dp[0][k][i], dp[1][j][k] + SB[k][i]);
}
f[0][j] = min(f[0][j], f[1][j] + SA[i][i] - SA[j][i]);
dp[0][j][i] = min(dp[0][j][i], f[1][j] + SB[j][i]);
}
g[0] = min(g[0], g[1] + SA[i][i]);
f[0][i] = min(f[0][i], g[1]);
}
ll mn = INF;
for(int j=1;j<=n;j++) {
for(int k=j+1;k<=n;k++)
mn = min(mn, dp[0][j][k]);
mn = min(mn, f[0][j]);
}
mn = min(mn, g[0]);
printf("%lld\n", mn);
}

@details@

为了方便转移,多设了几个只含 1 个 1 / 不含任何 1 的状态。

我下一次要是再不开 long long 我就。。。

@atcoder - AGC036D@ Negative Cycle的更多相关文章

  1. AtCoder AGC036D Negative Cycle (图论、DP)

    题目链接 https://atcoder.jp/contests/agc036/tasks/agc036_d 题解 这都是怎么想出来的啊..目瞪口呆系列.. 第一步转化至关重要: 一张图中不存在负环意 ...

  2. Atcoder Grand Contest 036 D - Negative Cycle

    Atcoder Grand Contest 036 D - Negative Cycle 解题思路 在某些情况下,给一张图加或删一些边要使图合法的题目要考虑到最短路的差分约束系统.这一题看似和最短路没 ...

  3. AtCoder Grand Contest 036D - Negative Cycle

    神仙题?反正我是完全想不到哇QAQ 这场AGC真的很难咧\(\times 10086\) \(\bf Description\) 一张 \(n\) 个点的图,\(i\) 到 \(i+1\) 有连边. ...

  4. Solution -「AGC 036D」「AT 5147」Negative Cycle

    \(\mathcal{Descriprtion}\)   Link.   在一个含 \(n\) 个结点的有向图中,存在边 \(\lang i,i+1,0\rang\),它们不能被删除:还有边 \(\l ...

  5. 多校联训 DP 专题

    [UR #20]跳蚤电话 将加边变为加点,方案数为 \((n-1)!\) 除以一个数,\(dp\) 每种方案要除的数之和即可. 点击查看代码 #include<bits/stdc++.h> ...

  6. AOJ GRL_1_B: Shortest Path - Single Source Shortest Path (Negative Edges) (Bellman-Frod算法求负圈和单源最短路径)

    题目链接: http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_B   Single Source Shortest Path ...

  7. AtCoder Grand Contest 036 A-C

    目录 \(\bf A - Triangle\) \(\bf B - Do\ Not\ Duplicate\) \(\bf C - GP 2\) \(\bf D - Negative \ Cycle\) ...

  8. AtCoder Grand Contest 036

    Preface 这篇已经鸽了好久的说,AGC037都打完了才回来补所以题目可能都记不大清楚了,如有错误请指正 这场感觉难度远高于上一场,从D开始就不会了,E没写(看了题解都不会写),F就是抄曲明姐姐的 ...

  9. AtCoder Grand Contest 036 简要题解

    从这里开始 比赛目录 Problem A Triangle 考虑把三角形移到和坐标轴相交,即 然后能够用坐标比较简单地计算面积,简单构造一下就行了. Code #include <bits/st ...

随机推荐

  1. web端的兼容性测试

    目前主流的浏览器有:chrome.firefox.safari.IE edge.Opera等.其中IE edge ,Google浏览器 和firefox被称为现代浏览器. 浏览器排行榜2019年4月浏 ...

  2. 碰撞的小球 ccf (模拟)

    问题描述 试题编号: 201803-2 试题名称: 碰撞的小球 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐 ...

  3. 【CODEVS】倒水问题

    题目描述: 有两个无刻度标志的水壶,分别可装 x 升和 y 升 ( x,y 为整数且均不大于 100 )的水.设另有一水 缸,可用来向水壶灌水或接从水壶中倒出的水, 两水壶间,水也可以相互倾倒.已知 ...

  4. Leetcode64.Minimum Path Sum最小路径和

    给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5,1] ...

  5. CentOS安装fortune+cowsay

    1.先找下看有没 2.安装 yum -y install fortune-mod 3.执行fortune 应该可以输出了,接着去弄中文词库,阮一峰的: git clone git@github.com ...

  6. webstorm/phpstorm破解版教程网址

    http://idea.lanyus.com/ http://www.php.cn/tool/phpstorm/408348.html 如果正版到期了,重新安装不能再次免费试用的话,之后我就用老版的w ...

  7. Java static 关键字学习

    static:意为静态的,简单理解就是公共的.独立于实例变量之外的1.概述:static是Java中常用的关键字,一般用于变量.方法.静态代码块.内部类上.静态导包2.用法: a.用于变量上表示该变量 ...

  8. C++学习笔记----2.4 C++对象的内存模型

    转载自:http://c.biancheng.NET/cpp/biancheng/view/2995.html点击打开链接 当对象被创建时,编译器会为每个对象分配内存空间,包括成员变量和成员函数. 直 ...

  9. Codeforces Round #275 (Div. 2) A. Counterexample【数论/最大公约数】

    A. Counterexample time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  10. vscode中编译输出c++是乱码

    vscode中编译输出c++是乱码的解决 环境说明:windows下面运行vscode win + R 右键属性 查看当前编码状态 知道当前环境的编码格式后,可以改变vscode上c++的格式 点击v ...