佳佳的 Fibonacci

\(f_n=f_{n-1}+f_{n-2},f_1=f_2=1\),求\(f_1+2f_2+3f_3+...+nf_nmod\ m,1≤n,m≤2^{31}-1\)。

数列问题加比较大的数据范围,就很容易到与矩阵快速幂有关,于是尝试变换式子,注意任何小的看起来不起眼的式子变换都有不同的结果,注意递推转移常用的不是策略,而是问题的划分

法一:

设\(t_n=f_1+2f_2+...+nf_n\),有\(t_n=t_{n-1}+nf_n\),现在关键在于求\(nf_n\),根据什么变维护什么的理论,设\(g_n=nf_n=n(f_{n-1}+f_{n-2})=\)

\((n-1)f_{n-1}+(n-2)f_{n-2}+f_{n-1}+2f_{n-2}=g_{n-1}+g_{n-2}+f_{n-1}+2f_{n-2}\),于是我们要想得到t,三个递推都得维护,所以不难有状态矩阵

\[\begin{bmatrix}f_{n-2}&f_{n-1}&g_{n-2}&g_{n-1}&t_{n}\end{bmatrix}
\]

按照填矩阵转移方程套路,不难有转移矩阵

\[\begin{bmatrix}0&1&0&2&0\\1&1&0&1&0\\0&0&0&1&0\\0&0&1&1&1\\0&0&0&0&1\end{bmatrix}
\]

按照基本套路转移即可。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define ll long long
using namespace std;
ll yyb;
struct matrix{
ll jz[5][5];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();
for(ri int i(0);i<5;++i)jz[i][i]|=true;
}
il matrix operator*(matrix x){
matrix y;y.clear();
ri int i,j,k;
for(i=0;i<5;++i)
for(j=0;j<5;++j)
for(k=0;k<5;++k)
(y.jz[i][j]+=jz[i][k]*x.jz[k][j])%=yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}s,t;
int main(){
s.jz[0][0]=0,s.jz[0][1]=1,s.jz[0][2]=0,s.jz[0][3]=1,s.jz[0][4]=0;
t.jz[0][0]=0,t.jz[0][1]=1,t.jz[0][2]=0,t.jz[0][3]=2,t.jz[0][4]=0;
t.jz[1][0]=1,t.jz[1][1]=1,t.jz[1][2]=0,t.jz[1][3]=1,t.jz[1][4]=0;
t.jz[2][0]=0,t.jz[2][1]=0,t.jz[2][2]=0,t.jz[2][3]=1,t.jz[2][4]=0;
t.jz[3][0]=0,t.jz[3][1]=0,t.jz[3][2]=1,t.jz[3][3]=1,t.jz[3][4]=1;
t.jz[4][0]=0,t.jz[4][1]=0,t.jz[4][2]=0,t.jz[4][3]=0,t.jz[4][4]=1;
ll n;scanf("%lld%lld",&n,&yyb),s=s*(t^n),printf("%lld",s.jz[0][4]);
return 0;
}

法二:

设\(s_n=\sum_{i=1}^nf_i\)

\[f_1+2f_2+3f_3+...+nf_n=s_n+s_n-s_1+s_n-s_2+...s_n-s_{n-1}
\]

\[=ns_n-(s_1+s_2+...+s_{n-1})
\]

前面一截已经可以很好算了,于是考虑变换后面一截,单独拿出来考虑,设

\[g(n)=s_1+s_2+...s_n=g_{n-1}+s_n
\]

\[s_n=s_{n-1}+f_n
\]

\[f_n=f_{n-1}+f_{n-2}
\]

而原式为

\[ans=ns_n-g_{n-1}
\]

所以只要想办法求出这两个东西即可,于是考虑同时转移,所以设状态矩阵

\[\begin{bmatrix}f_n&f_{n+1}&s_n&g_{n-1}\end{bmatrix}
\]

根据填转移矩阵套路,不难有转移矩阵

\[\begin{bmatrix}0&1&0&0\\1&1&1&0\\0&0&1&1\\0&0&0&1\end{bmatrix}
\]

以此转移即可,其实实质就是前缀和套前缀和再套前缀和,解释一下,s为f的前缀和,g是s的前缀和。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define ll long long
using namespace std;
ll yyb;
struct matrix{
ll jz[4][4];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();
for(ri int i(0);i<4;++i)jz[i][i]=1;
}
il matrix operator*(matrix x){
matrix y;y.clear();ri int i,j,k;
for(i=0;i<4;++i)
for(j=0;j<4;++j)
for(k=0;k<4;++k)
(y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb)%=yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}state,tran;
int main(){
ll n,ans;
scanf("%lld%lld",&n,&yyb);
state.jz[0][0]=1,state.jz[0][1]=1,state.jz[0][2]=1,state.jz[0][3]=0;
tran.jz[0][0]=0,tran.jz[0][1]=1,tran.jz[0][2]=0,tran.jz[0][3]=0;
tran.jz[1][0]=1,tran.jz[1][1]=1,tran.jz[1][2]=1,tran.jz[1][3]=0;
tran.jz[2][0]=0,tran.jz[2][1]=0,tran.jz[2][2]=1,tran.jz[2][3]=1;
tran.jz[3][0]=0,tran.jz[3][1]=0,tran.jz[3][2]=0,tran.jz[3][3]=1;
state=state*(tran^n-1),ans=((state.jz[0][2]*n%yyb-state.jz[0][3])%yyb+yyb)%yyb;
printf("%lld",ans);
return 0;
}
#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define ll long long
using namespace std;
ll yyb;
struct matrix{
ll jz[4][4];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();
for(ri int i(0);i<4;++i)jz[i][i]=1;
}
il matrix operator*(matrix x){
matrix y;y.clear();ri int i,j,k;
for(i=0;i<4;++i)
for(j=0;j<4;++j)
for(k=0;k<4;++k)
(y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb)%=yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}state,tran;
int main(){
ll n,ans;
scanf("%lld%lld",&n,&yyb);
state.jz[0][0]=1,state.jz[0][1]=1,state.jz[0][2]=1,state.jz[0][3]=0;
tran.jz[0][0]=0,tran.jz[0][1]=1,tran.jz[0][2]=0,tran.jz[0][3]=0;
tran.jz[1][0]=1,tran.jz[1][1]=1,tran.jz[1][2]=1,tran.jz[1][3]=0;
tran.jz[2][0]=0,tran.jz[2][1]=0,tran.jz[2][2]=1,tran.jz[2][3]=1;
tran.jz[3][0]=0,tran.jz[3][1]=0,tran.jz[3][2]=0,tran.jz[3][3]=1;
state=state*(tran^n-1),ans=((state.jz[0][2]*n%yyb-state.jz[0][3])%yyb+yyb)%yyb;
printf("%lld",ans);
return 0;
}

法三:

实际上我们可能有些东西不需要转移,递推里面很多式子都会有通向公式,而我们有结论\(s_n=\sum_{i=1}^nf_i=f_{n+2}-f_2\),接着想办法优化,接着法二

\[ans=ns_n-(s_1+s_2+...+s_{n-1})=
\]

\[ns_n-(f_3-f_2+...+f_{n+1}-f_2)=ns_n-(s_{n+1}-n-1)
\]

\[=n(f_{n+2}-f_2)-(f_{n+3}-n-2)=
\]

\[=nf_{n+2}-f_{n+3}+n+2
\]

于是我们只要递推处f就可以算出ans了。

参考代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define il inline
#define ri register
#define ll long long
using namespace std;
ll yyb;
struct matrix{
ll jz[2][2];
il void clear(){
memset(jz,0,sizeof(jz));
}
il void unit(){
clear();
for(ri int i(0);i<2;++i)jz[i][i]|=true;
}
il matrix operator*(matrix x){
matrix y;y.clear();
ri int i,j,k;
for(i=0;i<2;++i)
for(j=0;j<2;++j)
for(k=0;k<2;++k)
(y.jz[i][j]+=jz[i][k]*x.jz[k][j]%yyb)%=yyb;
return y;
}template<class free>
il matrix operator^(free y){
matrix ans,x(*this);ans.unit();
while(y){
if(y&1)ans=ans*x;
x=x*x,y>>=1;
}return ans;
}
}state,tran;
int main(){
ll n,ans;
scanf("%lld%lld",&n,&yyb);
state.jz[0][0]=0,state.jz[0][1]=1;
tran.jz[0][0]=0,tran.jz[0][1]=1;
tran.jz[1][0]=1,tran.jz[1][1]=1;
state=state*(tran^n+2),ans=state.jz[0][0]*n-state.jz[0][1]+2;
printf("%lld",(ans%yyb+yyb)%yyb);
return 0;
}

小结

不难看出随着优化程度的提高,问题解决办法也就越来越间接,矩阵维数也就越来越少,而这个优化的关键在于通项。

佳佳的 Fibonacci的更多相关文章

  1. 佳佳的Fibonacci

    #include<cstdio> #include<cstring> #include<iostream> #include<cmath> #inclu ...

  2. 一本通1644【例 4】佳佳的 Fibonacci

    1644:[例 4]佳佳的 Fibonacci 时间限制: 1000 ms         内存限制: 524288 KB sol:搞了大概一个多小时什么结果都没,被迫去看题解,感觉自己菜到家了qaq ...

  3. TYVJ P3407 佳佳的魔法照片 Label:语文很重要 语文很重要 语文很重要

    描述 佳佳的魔法照片(mphoto.pas\c\cpp) [题目背景] 佳佳的魔法照片(Magic Photo):如果你看过<哈利•波特>,你就会知道魔法世界里的照片是很神奇的.也许是因为 ...

  4. vijosP1285 佳佳的魔法药水

    vijosP1285 佳佳的魔法药水 链接:https://vijos.org/p/1285 [思路] 图论思想. 很巧妙. 如A+B=C,将AB之间连边,边权为C,用以找相连物品与合成物. 用Dij ...

  5. 【DFS】佳佳的魔法阵

    [vijos1284]佳佳的魔法阵 背景 也许是为了捕捉猎物(捕捉MM?),也许是因为其它原因,总之,佳佳准备设计一个魔法阵.而设计魔法阵涉及到的最关键问题,似乎就是那些带有魔力的宝石的摆放…… 描述 ...

  6. P1875 佳佳的魔法药水

    P1875 佳佳的魔法药水 题目描述 发完了 k 张照片,佳佳却得到了一个坏消息:他的 MM 得病了!佳佳和大家一样焦急 万分!治好 MM 的病只有一种办法,那就是传说中的 0 号药水 ……怎么样才能 ...

  7. vijos:P1285佳佳的魔法药水

    背景 发完了k张照片,佳佳却得到了一个坏消息:他的MM得病了!佳佳和大家一样焦急万分!治好MM的病只有一种办法,那就是传说中的0号药水……怎么样才能得到0号药水呢?你要知道佳佳的家境也不是很好,成本得 ...

  8. 洛谷 P1875 佳佳的魔法药水

    P1875 佳佳的魔法药水 题目描述 发完了 k 张照片,佳佳却得到了一个坏消息:他的 MM 得病了!佳佳和大家一样焦急 万分!治好 MM 的病只有一种办法,那就是传说中的 0 号药水 --怎么样才能 ...

  9. 洛谷—— P1875 佳佳的魔法药水

    https://www.luogu.org/problemnew/show/1875 题目背景 发完了 k 张照片,佳佳却得到了一个坏消息:他的 MM 得病了!佳佳和大家一样焦急 万分!治好 MM 的 ...

随机推荐

  1. WPF textbox 鼠标滚动更新日期,text文本值更改

    /// <summary> /// 选择日期 /// </summary> private void RQTxt_MouseWheel(object sender, Mouse ...

  2. ubuntu14.04 配置android studio环境

    二.复制所需的文件到ubuntu 2.1.如果你还没有linux版本的android studio.sdk.jdk请先下载所需文件,我已经上传到百度网盘了 下载地址: android studio-l ...

  3. mybatis group by查询返回map类型

    故事的发生是这样的. . . . . . . 一天 我发现我们的页面显示了这样的汇总统计数据,看起来体验还不错哦-- 然后,我发现代码是这样滴:分开每个状态分别去查询数量. 额e,可是为嘛不使用简单便 ...

  4. shell脚本进行设置启动/关闭

    vi /etc/init.d/confluence ----------------------------- #!/bin/bash# chkconfig: 2345 85 15# Provides ...

  5. gif,jpg(jpeg),png,webp,base64图片格式比较

    对于web前端开发的同学来说,图片保存格式非常的重要.那么该如何选择图片保存的格式呢?下面我总结一下gif,jpg,png等图片格式的区别. gif是很早应用的一种图片格式.它采用的是lzw的压缩算法 ...

  6. spring boot 与微服务之间的关系

    Spring Boot 和微服务没关系, Java 微服务治理框架普遍用的是 Spring Cloud. Spring Boot 产生的背景,是开发人员对 Spring 框架越来越复杂的配置吐槽越来越 ...

  7. leetcood学习笔记-9

    题目描述 方法一:转换为字符串 class Solution: def isPalindrome(self, x: int) -> bool: if x<0: return False e ...

  8. 二叉堆 与 PriorityQueue

    堆在存储器中的表示是数组,堆只是一个概念上的表示.堆的同一节点的左右子节点都没有规律. 堆适合优先级队列(默认排列顺序是升序排列,快速插入与删除最大/最小值). 数组与堆 堆(完全二叉树)(构造大顶堆 ...

  9. 前缀和+排序——cf1043E

    先不考虑第二个条件 要求i和所有其他人的分数和最小,选择x还是y,可以推出一个公式,即差xi-yi小的j都选y,反之都选x 那么按照xi-yi排序即可 然后再考虑第二个条件,做减法就行 /* xi+y ...

  10. Java习题练习

    Java习题练习 1. 依赖注入和控制反转是同一概念: 依赖注入和控制反转是对同一件事情的不同描述,从某个方面讲,就是它们描述的角度不同.依赖注入是从应用程序的角度在描述,可以把依赖注入描述完整点:应 ...