传送门

参考资料:

  [1]:图论-度序列可图性判断(Havel-Hakimi定理)

•题意

  给你 n 个非负整数列,判断这个序列是否为可简单图化的;

•知识支持

  握手定理:在任何无向图中,所有顶点的度数之和等于边数的2倍;

  推论:任何图,奇度顶点的个数为偶数;

  可图化定理:非负整数序列 $d={d_1,d_2,\cdots,d_n}$ 是可图化的当且仅当 $\sum_{i=1}^{i \leq n}d_i$ 为偶数;

  简单图:既不含平行边,也不含环;

  平行边:在无向图中,如果关联一对顶点的无向边多余 1 条,则称这些边为平行边;

  重数:平行边的条数;

•题解

  利用Havel定理判断即可;

HDU 2454"Degree Sequence of Graph G"(度序列可图性判断)的更多相关文章

  1. HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)

    主题链接:pid=2454">http://acm.hdu.edu.cn/showproblem.php?pid=2454 Problem Description Wang Haiya ...

  2. hdu 2454 Degree Sequence of Graph G (推断简单图)

    ///已知各点的度,推断是否为一个简单图 #include<stdio.h> #include<algorithm> #include<string.h> usin ...

  3. HDU 2454 Degree Sequence of Graph G——可简单图化&&Heavel定理

    题意 给你一个度序列,问能否构成一个简单图. 分析 对于可图化,只要满足度数之和是偶数,即满足握手定理. 对于可简单图化,就是Heavel定理了. Heavel定理:把度序列排成不增序,即 $deg[ ...

  4. hdu 2454 Degree Sequence of Graph G(可简单图化判定)

    传送门 •Havel-Hakimi定理: 给定一个非负整数序列{d1,d2,...dn},若存在一个无向图使得图中各点的度与此序列一一对应,则称此序列可图化. 进一步,若图为简单图,则称此序列可简单图 ...

  5. Hdoj 2454.Degree Sequence of Graph G 题解

    Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and bro ...

  6. UVA10720 Graph Construction 度序列可图性

    Luogu传送门(UVA常年上不去) 题意:求一个度序列是否可变换为一个简单图.$\text{序列长度} \leq 10000$ 题目看起来很简单,但是还是有一些小细节需要注意首先一个简单的结论:一张 ...

  7. 【Havel 定理】Degree Sequence of Graph G

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debug ...

  8. poj 1659 Frogs&#39; Neighborhood 度序列可图化 贪心

    题意: 对一个无向图给出一个度序列,问他是否可简单图化. 分析: 依据Havel定理,直接贪心就可以. 代码: //poj 1659 //sep9 #include <iostream> ...

  9. HDU 6078 - Wavel Sequence | 2017 Multi-University Training Contest 4

    /* HDU 6078 - Wavel Sequence [ DP ] | 2017 Multi-University Training Contest 4 题意: 给定 a[N], b[M] 要求满 ...

随机推荐

  1. re模块相关

    一.正则表达式中的转义: "\" 表示转义符 [()+*?/$.] 在字符组中一些特殊的字符会现出原形 所有的\w \d \s (\n,\t) \W \D \S 都表示它原本的意义 ...

  2. laravel后台扩展包

    https://github.com/the-control-group/voyager

  3. PPT转PDF

    需求:可以上传ppt,前台可以预览. 在用程序将ppt转pdf的过程中,遇到几个问题,记录如下: 1.检索 COM 类工厂中 CLSID 为 {91493441-5A91-11CF-8700-00AA ...

  4. java时间还在用date和calender?换LocalDateTime吧!

    java在时间计算上一直为人所诟病,在社区强烈反应下,java8推出了线程安全.简易.高可靠的时间包.并且数据库中也支持LocalDateTime类型,所以在数据存储时候使时间变得简单. LocalD ...

  5. Directx11 教程(1) 基本的windows应用程序框架(1)

    原文:Directx11 教程(1) 基本的windows应用程序框架(1)        在vs2010中,建立一个新的win32工程,名字是: myTutorialD3D11, 注意:同时勾选Cr ...

  6. oracle-600错误

    event='10841 trace name context forever' 可以屏蔽这个ORA-00600错误. SQL> show parameter event NAME TYPE V ...

  7. css面试题总结(转)

    转自此网页http://www.cnblogs.com/YangqinCao/p/5721810.html. 1.两栏布局,左边栏宽度固定,适应父元素高度变化 首先分析两栏布局, 两栏布局两种常见方法 ...

  8. Path Sum 深度搜索

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  9. 【JZOJ4889】【NOIP2016提高A组集训第14场11.12】最长公共回文子序列

    题目描述 YJC最近在学习字符串的有关知识.今天,他遇到了这么一个概念:最长公共回文子序列.一个序列S,如果S是回文的且分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...

  10. Python小技巧整理

    一.python小工具: 1.内置下载和网站: 进入相应目录:2.x python -m SimpleHTTPServer 3.x python -m http.server 2.字符串转换为JSON ...