引言

  • 这段时间来,看了西瓜书、蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼。于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力。
  • 我个人的计划是先从简单的数据集入手如手写数字识别、泰坦尼克号、房价预测,这些目前已经有丰富且成熟的方案可以参考,之后关注未来就业的方向如计算广告、点击率预测,有合适的时机,再与小伙伴一同参加线上比赛。

数据集

介绍

  • MNIST ("Modified National Institute of Standards and Technology")是计算机视觉中最典型的数据集之一,其一共包含训练集train.csv,测试集test.csv和提交示例sample_submission.csvcsv是一种数据格式,以逗号作为文件的分隔值。

  • 训练集train.csv包含4000028*28=784的图片,图片像素值为0-255,每张图片有对应的标签,其数据格式如下,可以看作是一个40000 * 785的矩阵,第一列存放标签;

  • 测试集test.csv包含2800028*28=784的图片,其不提供标签,矩阵维度为28000*784

读取数据集

观察到不同方案中数据的读取方法各不同,这里小结一下。

  • csv
  def loadTrainData():
l=[]
with open('/kaggle/input/digit-recognizer/train.csv') as file:
lines = csv.reader(file)
for line in lines:
l.append(line)
  • open
  # load csv files to numpy arrays
def load_data(data_dir):
train_data = open(data_dir + "train.csv").read()
  • numpy
  def load_data(path):
with np.load(path) as f:
x_train, y_train = f['x_train'], f['y_train']
x_test, y_test = f['x_test'], f['y_test']
return (x_train, y_train), (x_test, y_test)
  • panda
  train = pd.read_csv('../input/train.csv')

K近邻算法KNN

  • 这里不再介绍kNN的原理,贴一个简洁的实现,参考自https://blog.csdn.net/u012162613/article/details/41929171,其主要采用了二值化、L2范数作为距离度量。

实现A

  from numpy import *
import csv # 读取训练集
def loadTrainData():
l=[]
with open('/kaggle/input/digit-recognizer/train.csv') as file:
lines = csv.reader(file)
for line in lines:
l.append(line)
l.remove(l[0])
l=array(l)
data, label = l[:,1:], l[:,0]
label = label[:,newaxis]
a = normalizing(toInt(data))
b = toInt(label)
return a, b # 字符转整形
def toInt(array):
array = mat(array)
m,n = shape(array)
newArray = zeros((m,n))
for i in range(m):
for j in range(n):
newArray[i,j]=int(array[i,j])
return newArray # 二值化处理
def normalizing(array):
m,n = shape(array)
for i in range(m):
for j in range(n):
if array[i,j] != 0:
array[i,j]=1
return array # 加载测试集
def loadTestData():
l=[]
with open('/kaggle/input/digit-recognizer/test.csv') as file:
lines = csv.reader(file)
for line in lines:
l.append(line)
l.remove(l[0])
l=array(l)
data=l
return normalizing(toInt(data)) def loadTestResult():
l=[]
with open('/kaggle/input/digit-recognizer/sample_submission.csv') as file:
lines = csv.reader(file)
for line in lines:
l.append(line)
l.remove(l[0])
l=array(l)
label=l[:,1]
label = label[:, newaxis]
return toInt(label) # 保存结果
def saveResult(result):
with open('/kaggle/working/knn.csv', 'w', newline='') as myFile:
myWriter = csv.writer(myFile)
myWriter.writerow(['ImageId','Label'])
for i, label in enumerate(result):
tmp = [i+1, int(label)]
myWriter.writerow(tmp) # kNN分类
def classify(inX, dataSet, labels, k):
inX = mat(inX)
dataSet = mat(dataSet)
labels = mat(labels)
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize, 1)) - dataSet spDiffMat = array(diffMat) ** 2
spDistances = spDiffMat.sum(axis=1) #计算L2距离
distances = spDistances ** 0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i],0]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=lambda item:item[1], reverse=True)
return sortedClassCount[0][0] # 主函数
def handwritingClassTest():
trainData,trainLabel=loadTrainData()
testData =loadTestData()
testLabel = loadTestResult()
m,n=shape(testData)
errorCount=0
resultList=[]
for i in range(m):
classifierResult = classify(testData[i], trainData, trainLabel, 1)
resultList.append(classifierResult)
print("the classifier for %d came back with: %d, the real answer is: %d" % (i, classifierResult, testLabel[i]))
if (classifierResult != testLabel[i]): errorCount += 1.0
print("\nthe total number of errors is: %d" % errorCount)
print("\nthe total error rate is: %f" % (errorCount/float(m)))
saveResult(resultList) handwritingClassTest()
  • 结果:k=5,准确率96.40%;k=1,准确率96.27%。PS:按照个人理解,K值越小,结果应该更高才对。随后我换了另一个实现,其采用了numpy实现矩阵计算,运行速度比上面的代码块多了。

实现B

  import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
import time %matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray' # load csv files to numpy arrays
def load_data(data_dir):
train_data = open(data_dir + "train.csv").read()
train_data = train_data.split("\n")[1:-1]
train_data = [i.split(",") for i in train_data]
# print(len(train_data))
X_train = np.array([[int(i[j]) for j in range(1,len(i))] for i in train_data])
y_train = np.array([int(i[0]) for i in train_data]) # print(X_train.shape, y_train.shape) test_data = open(data_dir + "test.csv").read()
test_data = test_data.split("\n")[1:-1]
test_data = [i.split(",") for i in test_data]
# print(len(test_data))
X_test = np.array([[int(i[j]) for j in range(0,len(i))] for i in test_data]) # print(X_test.shape) return X_train, y_train, X_test class simple_knn():
"a simple kNN with L2 distance" def __init__(self):
pass def train(self, X, y):
self.X_train = X
self.y_train = y def predict(self, X, k=1):
dists = self.compute_distances(X)
# print("computed distances") num_test = dists.shape[0]
y_pred = np.zeros(num_test) for i in range(num_test):
k_closest_y = []
labels = self.y_train[np.argsort(dists[i,:])].flatten()
# find k nearest lables
k_closest_y = labels[:k] # out of these k nearest lables which one is most common
# for 5NN [1, 1, 1, 2, 3] returns 1
# break ties by selecting smaller label
# for 5NN [1, 2, 1, 2, 3] return 1 even though 1 and 2 appeared twice.
c = Counter(k_closest_y)
y_pred[i] = c.most_common(1)[0][0] return(y_pred) def compute_distances(self, X):
num_test = X.shape[0]
num_train = self.X_train.shape[0] dot_pro = np.dot(X, self.X_train.T)
sum_square_test = np.square(X).sum(axis = 1)
sum_square_train = np.square(self.X_train).sum(axis = 1)
dists = np.sqrt(-2 * dot_pro + sum_square_train + np.matrix(sum_square_test).T) return(dists)
  # runs for 13 minutes
predictions = [] for i in range(int(len(X_test)/(2*batch_size))):
# predicts from i * batch_size to (i+1) * batch_size
print("Computing batch " + str(i+1) + "/" + str(int(len(X_test)/batch_size)) + "...")
tic = time.time()
predts = classifier.predict(X_test[i * batch_size:(i+1) * batch_size], k)
toc = time.time()
predictions = predictions + list(predts)
# print("Len of predictions: " + str(len(predictions)))
print("Completed this batch in " + str(toc-tic) + " Secs.") print("Completed predicting the test data.") # runs for 13 minutes
# uncomment predict lines to predict second half of test data for i in range(int(len(X_test)/(2*batch_size)), int(len(X_test)/batch_size)):
# predicts from i * batch_size to (i+1) * batch_size
print("Computing batch " + str(i+1) + "/" + str(int(len(X_test)/batch_size)) + "...")
tic = time.time()
predts = classifier.predict(X_test[i * batch_size:(i+1) * batch_size], k)
toc = time.time()
predictions = predictions + list(predts)
# print("Len of predictions: " + str(len(predictions)))
print("Completed this batch in " + str(toc-tic) + " Secs.") print("Completed predicting the test data.") out_file = open("predictions.csv", "w")
out_file.write("ImageId,Label\n")
for i in range(len(predictions)):
out_file.write(str(i+1) + "," + str(int(predictions[i])) + "\n")
out_file.close()
  • 结果:K=5,96.90%,k=1,97.11%;相同的k值,实现B的准确率比实现A要高,原因是实现B未采用二值化,保留了更多的数字图像信息。

卷积神经网络CNN

  • 这里主要基于Pytorch实现。

数据加载

  # Construct the transform
import torchvision.transforms as transforms
from PIL import Image
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]) # Get the device we're training on
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def get_digits(df):
"""Loads images as PyTorch tensors"""
# Load the labels if they exist
# (they wont for the testing data)
labels = []
start_inx = 0
if 'label' in df.columns:
labels = [v for v in df.label.values]
start_inx = 1 # Load the digit information
digits = []
for i in range(df.pixel0.size):
digit = df.iloc[i].astype(float).values[start_inx:]
digit = np.reshape(digit, (28,28))
digit = transform(digit).type('torch.FloatTensor')
if len(labels) > 0:
digits.append([digit, labels[i]])
else:
digits.append(digit) return digits
  # Load the training data
train_X = get_digits(train) # Some configuration parameters
num_workers = 0 # number of subprocesses to use for data loading
batch_size = 64 # how many samples per batch to load
valid_size = 0.2 # percentage of training set to use as validation # Obtain training indices that will be used for validation
num_train = len(train_X)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split] # Define samplers for obtaining training and validation batches
from torch.utils.data.sampler import SubsetRandomSampler
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx) # Construct the data loaders
train_loader = torch.utils.data.DataLoader(train_X, batch_size=batch_size,
sampler=train_sampler, num_workers=num_workers)
valid_loader = torch.utils.data.DataLoader(train_X, batch_size=batch_size,
sampler=valid_sampler, num_workers=num_workers) # Test the size and shape of the output
dataiter = iter(train_loader)
images, labels = dataiter.next()
print(type(images))
print(images.shape)
print(labels.shape)

网络模型

  • 网络的结果主要分为cnn_layersfc_layers,个人认为fc_layers有些繁杂。
  # Import the necessary modules
import torch.nn as nn def calc_out(in_layers, stride, padding, kernel_size, pool_stride):
"""
Helper function for computing the number of outputs from a
conv layer
"""
return int((1+(in_layers - kernel_size + (2*padding))/stride)/pool_stride) # define the CNN architecture
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__() # Some helpful values
inputs = [1,32,64,64]
kernel_size = [5,5,3]
stride = [1,1,1]
pool_stride = [2,2,2] # Layer lists
layers = [] self.out = 28
self.depth = inputs[-1]
for i in range(len(kernel_size)):
# Get some variables
padding = int(kernel_size[i]/2) # Define the output from this layer
self.out = calc_out(self.out, stride[i], padding,
kernel_size[i], pool_stride[i]) # convolutional layer 1
layers.append(nn.Conv2d(inputs[i], inputs[i], kernel_size[i],
stride=stride[i], padding=padding))
layers.append(nn.ReLU()) # convolutional layer 2
layers.append(nn.Conv2d(inputs[i], inputs[i+1], kernel_size[i],
stride=stride[i], padding=padding))
layers.append(nn.ReLU())
# maxpool layer
layers.append(nn.MaxPool2d(pool_stride[i],pool_stride[i]))
layers.append(nn.Dropout(p=0.2)) self.cnn_layers = nn.Sequential(*layers) print(self.depth*self.out*self.out) # Now for our fully connected layers
layers2 = []
layers2.append(nn.Dropout(p=0.2))
layers2.append(nn.Linear(self.depth*self.out*self.out, 512))
layers2.append(nn.Dropout(p=0.2))
layers2.append(nn.Linear(512, 256))
layers2.append(nn.Dropout(p=0.2))
layers2.append(nn.Linear(256, 256))
layers2.append(nn.Dropout(p=0.2))
layers2.append(nn.Linear(256, 10)) self.fc_layers = nn.Sequential(*layers2) self.fc_last = nn.Linear(self.depth*self.out*self.out, 10) def forward(self, x):
x = self.cnn_layers(x)
x = x.view(-1, self.depth*self.out*self.out)
x = self.fc_layers(x)
# x = self.fc_last(x) return x # create a complete CNN
model = Net()
model

模型训练

  • 定义优化器,这里采用Adam。
  import torch.optim as optim

  # specify loss function
criterion = nn.CrossEntropyLoss() # specify optimizer
optimizer = optim.Adam(model.parameters(), lr=0.0005)
  • 采用交叉验证法,即从训练集中划分一定比例的验证集作为评价标准,防止过拟合。
  # number of epochs to train the model
n_epochs = 25 # you may increase this number to train a final model valid_loss_min = np.Inf # track change in validation loss # Additional rotation transformation
#rand_rotate = transforms.Compose([
# transforms.ToPILImage(),
# transforms.RandomRotation(20),
# transforms.ToTensor()
#]) # Get the device
print(device)
model.to(device)
tLoss, vLoss = [], []
for epoch in range(n_epochs): # keep track of training and validation loss
train_loss = 0.0
valid_loss = 0.0 #########
# train #
#########
model.train()
for data, target in train_loader:
# move tensors to GPU if CUDA is available
data = data.to(device)
target = target.to(device) # clear the gradients of all optimized variables
optimizer.zero_grad()
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# backward pass: compute gradient of the loss with respect to model parameters
loss.backward()
# perform a single optimization step (parameter update)
optimizer.step()
# update training loss
train_loss += loss.item()*data.size(0) ############
# validate #
############
model.eval()
for data, target in valid_loader:
# move tensors to GPU if CUDA is available
data = data.to(device)
target = target.to(device)
# forward pass: compute predicted outputs by passing inputs to the model
output = model(data)
# calculate the batch loss
loss = criterion(output, target)
# update average validation loss
valid_loss += loss.item()*data.size(0) # calculate average losses
train_loss = train_loss/len(train_loader.dataset)
valid_loss = valid_loss/len(valid_loader.dataset)
tLoss.append(train_loss)
vLoss.append(valid_loss) # print training/validation statistics
print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
epoch, train_loss, valid_loss)) # save model if validation loss has decreased
if valid_loss <= valid_loss_min:
print('Validation loss decreased ({:.6f} --> {:.6f}). Saving model ...'.format(
valid_loss_min,
valid_loss))
torch.save(model.state_dict(), 'model_cifar.pt')
valid_loss_min = valid_loss
  • 绘制Loss曲线
  # Plot the resulting loss over time
plt.plot(tLoss, label='Training Loss')
plt.plot(vLoss, label='Validation Loss')
plt.legend();

训练结果

  • 这里只展示模型在验证集上的结果,采用混淆矩阵表示(Confusion Matrix)。

  • 该矩阵中\((i,j)\)表示原本为\(i\)的样本被判定为\(j\)的数目。理想情况不存在误判,只有对角线上有值,其他部分为0。但我们的结果显示多多少少存在一些误判,比如\((9,4)\)表示原本为9的样本被误判为了4,这可以理解,因为4和9确实很相近。

测试结果

  • 加载训练权重
  model.load_state_dict(torch.load('model_cifar.pt'));

  • 加载测试集
  # Define the test data loader
test = pd.read_csv("../input/digit-recognizer/test.csv")
test_X = get_digits(test)
test_loader = torch.utils.data.DataLoader(test_X, batch_size=batch_size,
num_workers=num_workers)
  • 预测并保存结果
  # Create storage objects
ImageId, Label = [],[] # Loop through the data and get the predictions
for data in test_loader:
# Move tensors to GPU if CUDA is available
data = data.to(device)
# Make the predictions
output = model(data)
# Get the most likely predicted digit
_, pred = torch.max(output, 1) for i in range(len(pred)):
ImageId.append(len(ImageId)+1)
Label.append(pred[i].cpu().numpy()) sub = pd.DataFrame(data={'ImageId':ImageId, 'Label':Label})
sub.describe # Write to csv file ignoring index column
sub.to_csv("submission.csv", index=False)
  • 最终的结果是98.90%,比KNN要高接近两个点,而我将网络模型中的fc_layers替换成一层普通的全连接层后,结果变成了99.21%。

降维Dimensionality Reduction

  • 在高维数据下,算法的性能可能会变得很差,即维度灾难。因此我们使用降维方法将数据从高维投影到低维,这样学习算法将会简单很多。

主成干分析PCA

  • PCA是一类线性变换,将原始特征投射到子空间并且尽可能保留信息。因此算法尝试寻找最合适的方向和角度(即主成分)来最大化子空间的方差。

  • 算法

  • 实现

    # Standardize the data
    from sklearn.preprocessing import StandardScaler
    X = train.values
    X_std = StandardScaler().fit_transform(X) # Calculating Eigenvectors and eigenvalues of Cov matirx
    mean_vec = np.mean(X_std, axis=0)
    cov_mat = np.cov(X_std.T)
    eig_vals, eig_vecs = np.linalg.eig(cov_mat)
    # Create a list of (eigenvalue, eigenvector) tuples
    eig_pairs = [ (np.abs(eig_vals[i]),eig_vecs[:,i]) for i in range(len(eig_vals))] # Sort the eigenvalue, eigenvector pair from high to low
    eig_pairs.sort(key = lambda x: x[0], reverse= True) # Calculation of Explained Variance from the eigenvalues
    tot = sum(eig_vals)
    var_exp = [(i/tot)*100 for i in sorted(eig_vals, reverse=True)] # Individual explained variance
    cum_var_exp = np.cumsum(var_exp) # Cumulative explained variance
  • 可视化

    • 单独的方差(黑色)随着维度增大而减小,累计方差随着维度的增大而饱和。90%的方差可用前200个维度来表示。

    • 可视化PCA找到的前30个最大方差方向上的特征值。

      # Invoke SKlearn's PCA method
      n_components = 30
      pca = PCA(n_components=n_components).fit(train.values) eigenvalues = pca.components_.reshape(n_components, 28, 28) # Extracting the PCA components ( eignevalues )
      #eigenvalues = pca.components_.reshape(n_components, 28, 28)
      eigenvalues = pca.components_ n_row = 4
      n_col = 7 # Plot the first 8 eignenvalues
      plt.figure(figsize=(13,12))
      for i in list(range(n_row * n_col)):
      offset =0
      plt.subplot(n_row, n_col, i + 1)
      plt.imshow(eigenvalues[i].reshape(28,28), cmap='jet')
      title_text = 'Eigenvalue ' + str(i + 1)
      plt.title(title_text, size=6.5)
      plt.xticks(())
      plt.yticks(())
      plt.show()

    • 用5个特征做PCA并可视化前2个特征(代码略),数据点被分为几个集群,每个集群就是一类数字。

    • 由于PCA是无监督方法,这里也没有提供标签,于是我们接着采用K-means聚类算法并可视化。

      from sklearn.cluster import KMeans # KMeans clustering
      # Set a KMeans clustering with 9 components ( 9 chosen sneakily ;) as hopefully we get back our 9 class labels)
      kmeans = KMeans(n_clusters=9)
      # Compute cluster centers and predict cluster indices
      X_clustered = kmeans.fit_predict(X_5d)

线性判别分析LDA

参考https://www.cnblogs.com/pinard/p/6244265.html

  • LDA跟PCA一样,也采用线性降维,但其是监督的。

  • 算法过程如下

  • 实现、可视化

    lda = LDA(n_components=5)
    # Taking in as second argument the Target as labels
    X_LDA_2D = lda.fit_transform(X_std, Target.values )

  • LDA vs PCA

t-SNE(t-Distributed Stochastic Neighbour Embedding)

  • 不同于PCA、LDA,t-SNE是非线性、基于概率的降维方法。
  • 算法不同于寻找最大信息分离的方向,t-SNE将欧氏距离转化为条件概率,然后对概率应用t分布。概率应用衡量数据点之间的相似性。
  • 实现、可视化
  # Invoking the t-SNE method
tsne = TSNE(n_components=2)
tsne_results = tsne.fit_transform(X_std)

  • 相比PCA、LDA,数据点被更直观的分离,t-SNE更好地保留了数据的拓扑信息,但t-SNE的缺点是识别集群会出现多个局部极小点,可见颜色相同的集群被分为两个子群。

参考

Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维的更多相关文章

  1. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  2. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

  3. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  4. kaggle 实战 (1): PCA + KNN 手写数字识别

    文章目录 加载package read data PCA 降维探索 选择50维度, 拆分数据为训练集,测试机 KNN PCA降维和K值筛选 分析k & 维度 vs 精度 预测 生成提交文件 本 ...

  5. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  6. Pytorch入门——手把手教你MNIST手写数字识别

    MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...

  7. TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)

    从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...

  8. Pytorch1.0入门实战一:LeNet神经网络实现 MNIST手写数字识别

    记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表 ...

  9. 5 TensorFlow入门笔记之RNN实现手写数字识别

    ------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...

随机推荐

  1. linux清理函数

    每个非试验性的模块也要求有一个清理函数, 它注销接口, 在模块被去除之前返回所有资 源给系统. 这个函数定义为: static void   exit cleanup_function(void) { ...

  2. JVM调优-Jstack线程分析

    jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息,如果是在64位机器上,需要指定选项"-J-d64",Windows的jstack使 ...

  3. Linux 内核kobject 缺省属性

    当被创建时, 每个 kobject 被给定一套缺省属性. 这些属性通过 kobj_type 结构来指定. 这个结构, 记住, 看来如此: struct kobj_type { void (*relea ...

  4. Linux 内核端点

    USB 通讯的最基本形式是通过某些称为 端点 的. 一个 USB 端点只能在一个方向承载数 据, 或者从主机到设备(称为输出端点)或者从设备到主机(称为输入端点). 端点可看作一 个单向的管道. 一个 ...

  5. Java基础系列8——IO流超详细总结

    该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架. 在初学Java时,I ...

  6. QP简介

    QP简介 QP(Quantum Platform)是一个轻量级的.开源的.基于状态机的.事件驱动型应用程序框架.这个框架包括四部分: 事件处理器(QEP): 轻量级的事件驱动框架(QF): 任务调度微 ...

  7. springcloud玩转单点登录【oauth】

    随着公司项目的庞大,单点登录变得尤为重要,那么怎么实现单点登录,下面已oauth为标准实现单点登录. [特别鸣谢:魔乐科技,附上官网:www.mldn.cn] 1:项目组织结构 本项目为oAuth修改 ...

  8. .NET进阶篇07-.NET和COM

    知识需要不断积累.总结和沉淀,思考和写作是成长的催化剂 内容目录 一.COM和.NET元数据内存管理接口注册线程编组二..NET客户端调用COM组件三.COM客户端调用.NET组件四.嵌入互操作类型五 ...

  9. python类方法、类属性和静态方法

    class Game(object): #类属性 num = 0 #实例方法 def __init__(self): #实例属性 self.name = "laowang" #类方 ...

  10. Mysql 字段类型与约束条件

    一.数值类型 二.日期类型 三.枚举与集合 四.约束条件 五.设置严格模式 一.数值类型 1.1 整型 应用场景: id号.年龄... tinyint: 有符号:默认范围 -128, 127 无符号: ...