链接

PDF

bzoj

先求出正置边和反置边时b+1到前b个点的最短路dis[0/1][x](x∈[1,b]),

令D[x]=dis[0][x]+dis[1][x]

然后分组后每个x对代价的贡献为D[x]*(所在组中元素个数-1)

考虑DP决策分组过程,发现没有一个很好的序,

不过为了使得代价小,应该把D小的放在个数大的组里,D大的放在个数少的组里

由此可以想出,应该是大小相近的元素放在了同一组中,这意味着,先排序,在划分成s段,的所有情况包含了原问题的最优解

于是把D[1~b]排序后,有方程

$f[i][j]=MIN_{k=0}^{j-1}[f[i-1][k]+(j-k-1)*(sum[j]-sum[k])]$

$O(n^3)$

其中:f[i][j]表示把前j个分成i组的最小值,sum为D的前缀和

非法状态均置为INF

由于可以粗略的知道这个东西在j确定,i为自变量的函数图像上有凸性

(可以玄学地认为,最开始的时候,多划分一刀可以造成很大的改变,随着划分次数越来越多,多划分一刀的改变越来越微小)

于是,可以使用带权二分来优化这一DP

即,消去对划分次数的限制,通过二分来找到一个合适的划分附加代价,使得即使不限制划分次数,最后的最优解也恰好满足我们对划分数的限制

这样有了一个新的方程

$f'[j]=MIN_{k=0}^{j-1}[f'[k]+(j-k-1)*(sum[j]-sum[k])]+C$

$O(n^2log)$

考虑优化转移过程

拆开方程得到

$f'[j]=MIN_{k=0}^{j-1}[f'[k]+(k+1)sum[k]-ksum[j]-jsum[k]]+(j-1)sum[j]+C$

在方程中

当固定j不动时

随k增加,f'[k]+(k+1)sum[k]项增加,-ksum[j]-jsum[k]项减小

而随j的增加,含j的项(即-ksum[j]-jsum[k])对答案的影响加剧,于是,随j的增加,j的最优决策中的k会单调变大(随j的增加,我们决策时更为看重含j项,为了使含j项减小,我们试图使用更大的k)

这意味着这个方程有决策单调性

本题通过带权二分和决策单调性优化可以做到$O(nlog^2)$

(感觉最近状态很差,午休一直睡不着来着,几个月了吧,先是用N^2log给方哥号上贡献了半屏T,又以为可以nlog做,然后贡献了半屏Wa,最后才发现决策单调性)

代码:

 #include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define P pair <int ,int >
using namespace std;
priority_queue <P ,vector <P > ,greater <P > > PQ ;
int n,b,s,r;
struct INP{
int u,v,val;
}inp[];
struct ss{
int to,next,val;
}e[];
int first[],num;
LL d[],f[],sum[];
int lin[],dis[],que[],grt_st[];
void build(int ,int ,int );
void dij(int );
bool check(LL );
LL ask(int ,int );
int main()
{
int i,j,k,l;
LL L,R,mid;
scanf("%d%d%d%d",&n,&b,&s,&r);
for(i=;i<=r;i++){
scanf("%d%d%d",&inp[i].u,&inp[i].v,&inp[i].val);
build(inp[i].u,inp[i].v,inp[i].val);
}
dij(b+);
for(i=;i<=b;i++) d[i]=dis[i];
memset(first,,sizeof(first)),num=;
for(i=;i<=r;i++)
build(inp[i].v,inp[i].u,inp[i].val);
dij(b+);
for(i=;i<=b;i++) d[i]+=dis[i];
sort(d+,d+b+);
for(i=;i<=b;i++) sum[i]=sum[i-]+d[i];
L=,R=b*sum[b],mid=(L+R)>>;
while(R-L>=){
if(check(mid)) L=mid;
else R=mid-;
mid=(L+R)>>;
}
for(mid=R;mid>=L;mid--)
if(check(mid)){
printf("%lld\n",f[b]-s*mid);
return ;
}
return ;
}
void build(int f,int t,int val){
e[++num].next=first[f];
e[num].to=t,e[num].val=val;
first[f]=num;
}
void dij(int S){
int i,U;
memset(dis,0x3f,sizeof(dis));
dis[S]=;
P u,v;
u.first=,u.second=S;
PQ.push(u);
while(!PQ.empty()){
u=PQ.top();
PQ.pop();
U=u.second;
for(i=first[U];i;i=e[i].next)
if(dis[e[i].to]>dis[U]+e[i].val){
dis[e[i].to]=dis[U]+e[i].val;
v.first=dis[e[i].to],v.second=e[i].to;
PQ.push(v);
}
}
}
bool check(LL lim){
int tmp=,i,h=,t=;
int l,r,mid;
f[]=lin[]=,grt_st[]=;
que[t]=;
for(i=;i<=b;i++){
l=h+,r=t,mid=(l+r)>>;
while(r-l>){
if(i>=grt_st[que[mid]]) l=mid;
else r=mid-;
mid=(l+r)>>;
}
for(mid=r;mid>=l;mid--)
if(i>=grt_st[que[mid]]){
f[i]=ask(i,que[mid])+lim,lin[i]=lin[que[mid]]+;
break;
}
if(i==b) break;
grt_st[i]=b+;
while(h<t&&grt_st[que[t]]>i&&ask(grt_st[que[t]],i)<=ask(grt_st[que[t]],que[t])) grt_st[i]=grt_st[que[t]],t--;
if(h<t){
l=max(grt_st[que[t]],i+),r=grt_st[i]-,mid=(l+r)>>;
while(r-l>){
if(ask(mid,i)<=ask(mid,que[t])) r=mid;
else l=mid+;
mid=(l+r)>>;
}
for(mid=l;mid<=r;mid++)
if(ask(mid,i)<=ask(mid,que[t])){
grt_st[i]=mid;
break;
}
}
if(grt_st[i]!=b+)
que[++t]=i;
}
return lin[b]>=s;
}
LL ask(int x,int typ){
return f[typ]+(x-typ-)*(sum[x]-sum[typ]);
}

[World Final 2016] Branch Assignment的更多相关文章

  1. 4609: [Wf2016]Branch Assignment 最短路 DP (阅读理解题)

    Bzoj的翻译出锅了所以来官方题面:这个题应该是单向边而BZOJ说的是双向边,什么你WA了?谁叫你懒得看英文...... 显然我们能正向反向两遍SPFA处理出每个点到总部的距离和总部到每个点的距离.如 ...

  2. Gym-101242B:Branch Assignment(最短路,四边形不等式优化DP)

    题意:要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门分成s个组.分组完成后,每一组的任 意两个点之间都要传递信息.假设在(i,j)两个点间传送信息,要先把信息加密, ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. BZOJ 4619 Swap Space 解题报告

    今天是因为David Lee正好讲这个题的类似题,我才做了一下. 本题是world final 2016的一道水…… 题目地址如下 http://www.lydsy.com/JudgeOnline/p ...

  5. Kafka Consumer2

    本文记录了和conumser相关的几个类. 首先是RequestFuture这个类,consumer和服务端通信使用它作为返回值. 其次是HeartBeat机制,consumer和coordinato ...

  6. JGit----将 Git 嵌入你的应用

    如果你想在一个 Java 程序中使用 Git ,有一个功能齐全的 Git 库,那就是 JGit . JGit 是一个用 Java 写成的功能相对健全的 Git 的实现,它在 Java 社区中被广泛使用 ...

  7. 2016/09/21 Java关键字final

    1.final类 final类不能被继承,没有子类,final类中的方法默认是final的. final类不能被继承,因此final类的成员方法没有机会被覆盖,默认都是final的. 2.final方 ...

  8. 2016 China Collegiate Programming Contest Final

    2016 China Collegiate Programming Contest Final Table of Contents 2016 China Collegiate Programming ...

  9. Atcoder CODE FESTIVAL 2016 Grand Final E - Water Distribution

    Atcoder CODE FESTIVAL 2016 Grand Final E - Water Distribution 题目链接:https://atcoder.jp/contests/cf16- ...

随机推荐

  1. flutter 安装过程遇到的坑

    Flutter是一个移动应用程序的软件开发工具包(SDK),用一个代码库构建高性能.高保真的iOS和Android应用程序.目标是使开发人员能够为Android和iOS提供自然的高质量的应用,在滚动行 ...

  2. Mac OSX配置XAMP虚拟主机

    在前端工作中,有时候需要配置下环境,这篇文章主要是记录了在wamp中配置虚拟主机 首先需要下载wamp软件和navicat数据库管理软件进行管理,下面默认已经下载好所需软件.并且打开服务. 第一步:把 ...

  3. 同时绑定onpropertychange 和 oninput 事件,实时检测 input、textarea输入改变事件,支持低版本IE,支持复制粘贴

    实时检测 input.textarea输入改变事件,支持低版本IE,支持复制粘贴 检测input.textarea输入改变事件有以下几种: 1.onkeyup/onkeydown 捕获用户键盘输入事件 ...

  4. Git使用、Git配置、Git提交代码、Git上传

    非教程,只是自己的一个简单笔记.建议没有入门的朋友,直接看git的官方help文档: https://help.github.com/articles/set-up-git 1.注册一个git账号,超 ...

  5. sql server 2012 打开提示无效的许可证数据。需要重新安装

        重装什么的没有用,需要下载Visual Studio 2010 Isolated Shell (zh-CN) ,重新安装后就好了   下载地址 Visual Studio 2010 Isola ...

  6. 深入理解SpringCloud之Eureka注册过程分析

    eureka是一种去中心化的服务治理应用,其显著特点是既可以作为服务端又可以作为服务向自己配置的地址进行注册.那么这篇文章就来探讨一下eureka的注册流程. 一.Eureka的服务端 eureka的 ...

  7. 修改vs2012 颜色

    http://bbs.pcbeta.com/viewthread-1265615-1-1.html VS2012的默认深色主题的确让整个IDE看起来很有气场,而且深色的主题保护眼睛,还是蛮不错的. 但 ...

  8. find_package()的查找*.cmake的顺序

    1. find_package(<Name>)命令首先会在模块路径中寻找 Find<name>.cmake,这是查找库的一个典型方式.具体查找路径依次为CMake: 变量${C ...

  9. CentOS7 下安装 NFS,Linux/Windows 作为客户端

    目录 一.简介 1. 定义 2. 版本和变化 3. 部署说明 二.服务端 1. 关闭防火墙 2. 安装 nfs 3. 配置说明 4. 配置共享目录 5. 启动服务 6. 确认启动成功 三.Linux ...

  10. mongo学习使用记录1

    1 mongo的安装 1.添加MongoDB安装源 1.添加MongoDB安装源vim /etc/yum.repos.d/mongodb-enterprise.repo 将下列配置项写入文件 [mon ...