CNN卷积层基础:特征提取+卷积核+反向传播
本篇介绍卷积层的线性部分
一、与全连接层相比卷积层有什么优势?
卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集、汇聚),从附近的卷积结果中再采样选择一些高价值的信息,让特征向少而精的方向前进。
全连接层相当于考虑全局(整张图像)的特征
二、卷积的另一种解释
傅里叶变换:将数据从空间域的展示形式转变到频率域的形式。
理解:图像比作一道做好的菜,傅里叶变换就是找出这道菜具体 的配料及各种配料的用量。
图像中,低频信息是大体轮廓(整体),高频信息是图中物体的纹理特征
若A, B是矩阵,下面两式是等价的
C=conv2(A, B)
C=IFFT(FFT(A) * FFT(B)) #这里*是“元素级别的乘法”
对卷积核做傅里叶变换,可以看出高/低频信号的强度,
由于最终要进行元素级的乘法,如果卷积核在某个频率的数值比较低,经过乘法后的输入数据在这个频率的数据也会变小。滤波核在某个频率的数值为0,说明卷积算法计算后会舍弃这部分信息。
Gabor Filter,保留高频舍弃低频,一些文章宣称自己的模型第一层的参数像Gabor Filter。
所以,从傅里叶变换来看,卷积层的意义——
分离低频和高频信息,使它们能够被分别处理。
三、卷积层的反向传播
计算参数:
1卷积层输入图像(数据)X对目标函数的偏导数
2卷积层线性部分参数W对目标函数的偏导数
解法
A:按卷积定义求解,需要计算:
1前向计算图
2下层Loss
3本层w导数
B:转换后的解法,软件库中常用套路
将卷积运算转换为矩阵和向量的点积——
输入数据被转换成了一个size更大的矩阵(为了适应矩阵式的卷积操作有些元素需要重复出现)
卷积核被转换成了一个向量
软件库选择矩阵式解法的原因:矩阵乘法运算经过多年的研究,运算效率非常有保障。按定义的卷积运算性能较差。
CNN卷积层基础:特征提取+卷积核+反向传播的更多相关文章
- CNN卷积层:ReLU函数
卷积层的非线性部分 一.ReLU定义 ReLU:全称 Rectified Linear Units)激活函数 定义 def relu(x): return x if x >0 else 0 #S ...
- Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导
1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...
- Tensorflow之CNN卷积层池化层padding规则
padding的规则 · padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例) 输出宽度:output_width = (in_width-filter_wid ...
- CNN 卷积层输入Map大小计算
对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height ) ...
- CNN中卷积层 池化层反向传播
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...
- 卷积神经网络(CNN)反向传播算法
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...
- 2. CNN卷积网络-前向传播算法
1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 我们已经了解了CNN的结构,CNN主要结构有输入层,一些卷积层和池化层,后面是DNN全连接层 ...
- 卷积神经网络基础(CNN)【转载】
作者: Sanjay Chan [ http://blog.csdn.net/chenzomi ] 背景 之前在网上搜索了好多好多关于CNN的文章,由于网络上的文章很多断章取义或者描述不清晰,看了很多 ...
- CNN中卷积层的计算细节
原文链接: https://zhuanlan.zhihu.com/p/29119239 卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数.图像高度.图像宽度.图像通道数 输出矩阵格式:与输 ...
随机推荐
- lapis 项目添加prometheus 监控
lapis 是基于openresty 扩展的,所以直接将支持prometheus的模块构建进openresty 就可以了 我使用的是nginx-module-vts 模块 环境准备 我已经构建好了 ...
- Dev TextEdit 输入提示
TextEdit.Properties.NullValuePromptShowForEmptyValue = true; TextEdit.Properties.NullValuePrompt = “ ...
- js对象的key类型
http://javascript.ruanyifeng.com/grammar/object.html#toc2 对象的所有键名都是字符串(ES6 又引入了 Symbol 值也可以作为键名),所以加 ...
- Pullword 分词工具
def get_response(self, txt): """ 热词工具 """ datas = [] request_lists = [ ...
- Linux下nohup日志输出过大问题解决方案
转载自:http://blog.csdn.net/shawnhu007/article/details/50971084 最近在一hadoop测试集群运行一个spark streaming程序,然后使 ...
- Spring Cloud(Dalston.SR5)--Ribbon 中间层负载均衡
Spring Cloud 集成了 Ribbon 并结合 Eureka 可以实现客户端的负载均衡,使用 @LoadBalanced 修饰的 RestTemplate 类拥有了负载均衡功能,在 Sprin ...
- eclipse中maven运行run as clean等没反应处理方式
在jdk配置处添加参数: -Dmaven.multiModuleProjectDirectory=$MAVEN_HOME 注意:这里有一个前提就是你已经正确安装maven [在环境变量中添加MAVEN ...
- MS DSVM、DLVM
DSVM(Data Science Virtual Machine 数据科学虚拟机) 是专为研究数据科学生成的 Microsoft Azure 云上的自定义 VM 映像.它预装并预配了许多热门数据科 ...
- 【java】JDK与JRE的区别
JRE和JDK区别: JDK和JRE提供的服务包: JDK是整个JAVA的核心,JDK包含如下核心组件: ·javac – 编译器 ·jar – 打包工具 ·javadoc – 文档生成器 ·jdb ...
- Delphi实现软件中登录用户的操作权限
数据库结构:包括两张表BaseData和UserRightData,BaseData中是一张基本表,里面不区分用户,UserRightData是用户权限表,结构和BaseData一样,只是多了用户字段 ...