本篇介绍卷积层的线性部分

一、与全连接层相比卷积层有什么优势

卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集、汇聚),从附近的卷积结果中再采样选择一些高价值的信息,让特征向少而精的方向前进。

全连接层相当于考虑全局(整张图像)的特征

二、卷积的另一种解释

傅里叶变换:将数据从空间域的展示形式转变到频率域的形式。

理解:图像比作一道做好的菜,傅里叶变换就是找出这道菜具体 的配料及各种配料的用量。

图像中,低频信息是大体轮廓(整体),高频信息是图中物体的纹理特征

若A, B是矩阵,下面两式是等价的

C=conv2(A, B)

C=IFFT(FFT(A) * FFT(B))   #这里*是“元素级别的乘法”

卷积核做傅里叶变换,可以看出高/低频信号的强度,

由于最终要进行元素级的乘法,如果卷积核在某个频率的数值比较低,经过乘法后的输入数据在这个频率的数据也会变小。滤波核在某个频率的数值为0,说明卷积算法计算后会舍弃这部分信息。

Gabor Filter,保留高频舍弃低频,一些文章宣称自己的模型第一层的参数像Gabor Filter。

所以,从傅里叶变换来看,卷积层的意义——

分离低频和高频信息,使它们能够被分别处理。

三、卷积层的反向传播

计算参数:

1卷积层输入图像(数据)X对目标函数的偏导数

2卷积层线性部分参数W对目标函数的偏导数

解法

A:按卷积定义求解,需要计算:

1前向计算图

2下层Loss

3本层w导数

B:转换后的解法,软件库中常用套路

将卷积运算转换为矩阵和向量的点积——

输入数据被转换成了一个size更大的矩阵(为了适应矩阵式的卷积操作有些元素需要重复出现)

卷积核被转换成了一个向量

软件库选择矩阵式解法的原因:矩阵乘法运算经过多年的研究,运算效率非常有保障。按定义的卷积运算性能较差。

CNN卷积层基础:特征提取+卷积核+反向传播的更多相关文章

  1. CNN卷积层:ReLU函数

    卷积层的非线性部分 一.ReLU定义 ReLU:全称 Rectified Linear Units)激活函数 定义 def relu(x): return x if x >0 else 0 #S ...

  2. Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导

    1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...

  3. Tensorflow之CNN卷积层池化层padding规则

    padding的规则 ·        padding=‘VALID’时,输出的宽度和高度的计算公式(下图gif为例) 输出宽度:output_width = (in_width-filter_wid ...

  4. CNN 卷积层输入Map大小计算

    对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height ) ...

  5. CNN中卷积层 池化层反向传播

    参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...

  6. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  7. 2. CNN卷积网络-前向传播算法

    1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 我们已经了解了CNN的结构,CNN主要结构有输入层,一些卷积层和池化层,后面是DNN全连接层 ...

  8. 卷积神经网络基础(CNN)【转载】

    作者: Sanjay Chan [ http://blog.csdn.net/chenzomi ] 背景 之前在网上搜索了好多好多关于CNN的文章,由于网络上的文章很多断章取义或者描述不清晰,看了很多 ...

  9. CNN中卷积层的计算细节

    原文链接: https://zhuanlan.zhihu.com/p/29119239 卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数.图像高度.图像宽度.图像通道数 输出矩阵格式:与输 ...

随机推荐

  1. Singer 学习二 使用Singer进行gitlab 2 postgres 数据转换

    Singer 可以方便的进行数据的etl 处理,我们可以处理的数据可以是api 接口,也可以是数据库数据,或者 是文件 备注: 测试使用docker-compose 运行&&提供数据库 ...

  2. Hessian总结

    一.简介: Hessian是一个基于Binary-RPC 实现的远程通讯library,基于 Http 协议进行传输.通过其自定义的串行化机制将请求信息进行序列化,产生二进制流.响应端根据 Hessi ...

  3. laravel 打印完整sql语句

    laravel5 用DB自带的getQueryLog方法直接打印: DB::connection()->enableQueryLog(); // 开启QueryLog \App\User::fi ...

  4. struts中jsp表单控件命名注意

    在jsp页面中写了这样的一个表单控件 <td>维修任务码</td><td><input type="text" id="mTas ...

  5. .ajax向后台传递数组(转)

    js部分代码 //创建一个测试数组 var boxIds = new Array(); boxIds.push(12182); boxIds.push(12183); boxIds.push(1218 ...

  6. Redis 基础命令

    1. 进入redis目录,启动redis cd src ./redis-server 2.  进入redis目录,启动redis客户端 cd src ./redis-cli 3. info命令 4. ...

  7. 【设计模式】JDK源码中用到的设计模式

    https://blog.csdn.net/angjunqiang/article/details/42061453 https://blog.csdn.net/baiye_xing/article/ ...

  8. OpenWrt路由器通过LuCI界面实现Guest SSID功能

    转自: http://blog.ltns.info/linux/guest_ssid_over_openwrt_router/ 之前尝试过 Tomato路由器设置VLAN实现Guest SSID功能, ...

  9. 浅析Hyperledger Fabric共识算法 摘自http://www.cocoachina.com/blockchain/20180829/24728.html

    Hyperledger Fabric共识算法 区块链系统是一个分布式架构,交易账本信息由各个节点管理,组成一个庞大的分布式账本.在分布式系统中,各个节点收到的交易信息的顺序可能存在差异(例如,网络延迟 ...

  10. 实例快速上手UDP和TCP的使用

    TCP和UDP两个协议在Java通信编程中是如何被使用的 UDP协议与TCP协议之间的区别不再分析,主要是分析一下这两个协议在Java通信编程中是如何被使用的.首先介绍TCP,对于TCP,Java语言 ...