Xtreme9.0 - Block Art 线段树
Block Art
题目连接:
https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/block-art
Description
The NeoCubist artistic movement has a very distinctive approach to art. It starts with a rectangle which is divided into a number of squares. Then multiple rounds of layering and scraping occur. In a layering round, a rectangular region of this canvas is selected and a layer of cubes, 1 cube deep, is added to the region. In a scraping round, a rectangular region of the canvas is selected, and a layer of cubes, again 1 cube deep, is removed.
The famous artist I.M. Blockhead seeks your help during the creation of this artwork. As he is creating his art, he is curious to know how many blocks are in different regions of the canvas.
Your task is to write a program that tracks the creation of a work of Pseudo-Cubist art, and answers I.M.’s periodic queries about the number of blocks that are on the canvas. Consider, for example, the following artwork created on a canvas with 5 rows and 15 columns or squares. The canvas starts without any blocks, like in the figure below. We label cells in the canvas based on the tuple (row,column), with the upper left corner being designated (1,1). The numbers in each cell represent the height of the blocks in that cell.
fig1.jpg
After adding a layer in blocks to the rectangle with upper left corner at (2,3) and a lower right corner of (4, 10), the canvas now looks like the following:
fig2.jpg
After adding a layer of blocks in the rectangle with upper left corner at (3,8) and a lower right corner of (5, 15), the canvas now looks like the following:
fig3.jpg
If Blockhead were to ask how many blocks are currently in the artwork in the rectangle with upper left corner (1,1) and lower right corner (5,15), you would tell him 48.
Now, if we remove a layer of blocks from the rectangle with upper left corner at (3,6) and a lower right corner of (4, 12), the canvas now looks like the following:
fig4.jpg
If Blockhead were to ask how many blocks are now in the artwork in the rectangle with upper left corner (3,5) and lower right corner (4,13), you would tell him 10.
“Beautiful!” exclaims Blockhead.
Input
The first line in each test case are two integers r and c, 1 <= r <= 12, 1 <= c <= 106, where r is the number of rows and c is the number of columns in the canvas.
The next line of input contains an integer n, 1 <= n <= 104.
The following n lines of input contain operations and queries done on the initially empty canvas. The operations will be in the following format:
[operation] [top left row] [top left column] [bottom right row] [bottom right column]
[operation] is a character, either “a” when a layer of blocks is being added, “r” when a layer of blocks is being removed, and “q” when Blockhead is asking you for the number of blocks in a region.
The remaining values on the line correspond to the top left and bottom right corners of the rectangle.
Note: You will never be asked to remove a block from a cell that has no blocks in it.
Output
For each “q” operation in the input, you should output, on a line by itself, the number of blocks in the region of interest.
Sample Input
5 15
5
a 2 3 4 10
a 3 8 5 15
q 1 1 5 15
r 3 6 4 12
q 3 5 4 13
Sample Output
48
10
Hint
题意
给你一个矩形,然后你需要维护三个操作
使得一个矩形区域都加1,使得一个矩形区域减一,查询一个矩形区域的和
题解
仔细观察可以知道,这个矩形的宽才12,所以直接暴力一维线段树就好了。
二维线段树会mle
所以我们对于每一行都单独处理就好了,这样就能把空间省下来。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;
struct node{
typedef int SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType sum , lazy;
void update(SgTreeDataType v)
{
sum += (R-L+1)*v;
lazy += v;
}
};
treenode tree[maxn*4];
inline void push_down(int o)
{
SgTreeDataType lazyval = tree[o].lazy;
tree[2*o].update(lazyval) ; tree[2*o+1].update(lazyval);
tree[o].lazy = 0;
}
inline void push_up(int o)
{
tree[o].sum = tree[2*o].sum + tree[2*o+1].sum;
}
inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum = tree[o].lazy = 0;
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
}
}
inline void update(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].update(v);
else
{
push_down(o);
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
}
inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>1;
SgTreeDataType res = 0;
if (QL <= mid) res += query(QL,QR,2*o);
if (QR > mid) res += query(QL,QR,2*o+1);
push_up(o);
return res;
}
}
}T;
int r,c;
int ans[10005];
string op[10005];
int x1[10005],Y1[10005],x2[10005],y2[10005];
int main()
{
scanf("%d%d",&r,&c);
int m;scanf("%d",&m);
for(int i=1;i<=m;i++)
cin>>op[i],scanf("%d%d%d%d",&x1[i],&Y1[i],&x2[i],&y2[i]);
for(int i=1;i<=r;i++){
T.build_tree(1,c,1);
for(int j=1;j<=m;j++){
if(x1[j]<=i&&i<=x2[j]){
if(op[j][0]=='q')ans[j]+=T.query(Y1[j],y2[j],1);
if(op[j][0]=='a')T.update(Y1[j],y2[j],1,1);
if(op[j][0]=='r')T.update(Y1[j],y2[j],-1,1);
}
}
}
for(int i=1;i<=m;i++)
if(op[i][0]=='q')
cout<<ans[i]<<endl;
}
Xtreme9.0 - Block Art 线段树的更多相关文章
- HDU5023:A Corrupt Mayor's Performance Art(线段树区域更新+二进制)
http://acm.hdu.edu.cn/showproblem.php?pid=5023 Problem Description Corrupt governors always find way ...
- hdu 5023 A Corrupt Mayor's Performance Art 线段树
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- hdu----(5023)A Corrupt Mayor's Performance Art(线段树区间更新以及区间查询)
A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 100000/100 ...
- HDU 5023 A Corrupt Mayor's Performance Art 线段树区间更新+状态压缩
Link: http://acm.hdu.edu.cn/showproblem.php?pid=5023 #include <cstdio> #include <cstring&g ...
- 线段树 poj 1436
题目大意:给出n条垂直于x轴的线段的数据y1,y2,x,求出有几个三条线段一组的三元组并且他们兩兩能相见的.思路:对y轴建树,将x排序,然后按顺序边询问边擦入,用mark[i][j]表示j往左可以看到 ...
- zkw线段树详解
转载自:http://blog.csdn.net/qq_18455665/article/details/50989113 前言 首先说说出处: 清华大学 张昆玮(zkw) - ppt <统计的 ...
- HDU4288 Coder(线段树)
注意添加到集合中的数是升序的,先将数据读入,再离散化. sum[rt][i]表示此节点的区域位置对5取模为i的数的和,删除一个数则右边的数循环左移一位,添加一个数则右边数循环右移一位,相当于循环左移4 ...
- HDU4288:Coder(线段树单点更新版 && 暴力版)
Problem Description In mathematics and computer science, an algorithm describes a set of procedures ...
- hdu4419 Colourful Rectangle 12年杭州网络赛 扫描线+线段树
题意:给定n个矩形,每个矩形有一种颜色,RGB中的一种.相交的部分可能为RG,RB,GB,RGB,问这n个矩形覆盖的面积中,7种颜色的面积分别为多少 思路:把x轴离散化做扫描线,线段树维护一个扫描区间 ...
随机推荐
- 图解MySQL 内连接、外连接
2.内连接(INNER JOIN)内连接(INNER JOIN):有两种,显式的和隐式的,返回连接表中符合连接条件和查询条件的数据行.(所谓的链接表就是数据库在做查询形成的中间表).例如:下面的语句3 ...
- scrapy 简单防封
设置爬取间隔 setting.py from random import random DOWNLOAD_DELAY = random()* ps:此次的爬取间隔,在读取seeting文件确定,并非每 ...
- 20155201 2016-2017-2 《Java程序设计》第五周学习总结
20155201 2016-2017-2 <Java程序设计>第五周学习总结 教材学习内容总结 第八章 异常处理 程序设计本身的错误,建议使用Exception或其子类实例来表现,称错误处 ...
- 在 Linux 中安装 VMware Tools
由于较新的Linux版本中都包含了vm的部分组件,导致直接安装VMware Tools失败.所以这里写了篇新的. 软件版本:VMware 12 Linux版本:Ubuntu Desktop 16.04 ...
- 洛谷 P1045 【麦森数】快速幂
不用快速幂,压位出奇迹! 本人是个蒟蒻,不太熟悉快速幂,这里给大家介绍一种压位大法. 让我们来分析一下题目,第一位是送分的,有一个专门求位数的函数:n*log10(2)+1. 然后题目中p<=3 ...
- 使用Cobbler批量部署Linux和Windows:CentOS/Ubuntu批量安装(二)
通过前面服务端的部署,已经配置好了 Cobbler Server 端,接下来开始进行 CentOS/Ubuntu 的批量安装,在进行 CentOS/Ubuntu 批量安装时,也需要通过Cobbler来 ...
- Heapify
Given an integer array, heapify it into a min-heap array. For a heap array A, A[0] is the root of he ...
- Spring面试问答25题
1.什么是Spring框架?Spring框架有哪些主要模块? Spring框架是一个为Java应用程序的开发提供了综合.广泛的基础性支持的Java平台.Spring帮助开发者解决了开发中基础性的问题, ...
- QTP图片验证/图片比较/二进制流对比法
图片验证主要是文件对比,其中我们可以利用二进制的方法读取图片信息,然后进行对比,达到对比的效果,本例子利用fso对象的文件流的方法实现,代码如下: Public Function CompareFil ...
- MySQL 5.6 Replication 复制 FAQ
原文请参照MySQL官方文档Reference Manual,版本5.6.10. 复制功能使得数据可以从一个MySQL数据库(master主库)复制到另一个或多个MySQL数据库(slave从库).缺 ...