Block Art

题目连接:

https://www.hackerrank.com/contests/ieeextreme-challenges/challenges/block-art

Description

The NeoCubist artistic movement has a very distinctive approach to art. It starts with a rectangle which is divided into a number of squares. Then multiple rounds of layering and scraping occur. In a layering round, a rectangular region of this canvas is selected and a layer of cubes, 1 cube deep, is added to the region. In a scraping round, a rectangular region of the canvas is selected, and a layer of cubes, again 1 cube deep, is removed.

The famous artist I.M. Blockhead seeks your help during the creation of this artwork. As he is creating his art, he is curious to know how many blocks are in different regions of the canvas.

Your task is to write a program that tracks the creation of a work of Pseudo-Cubist art, and answers I.M.’s periodic queries about the number of blocks that are on the canvas. Consider, for example, the following artwork created on a canvas with 5 rows and 15 columns or squares. The canvas starts without any blocks, like in the figure below. We label cells in the canvas based on the tuple (row,column), with the upper left corner being designated (1,1). The numbers in each cell represent the height of the blocks in that cell.

fig1.jpg

After adding a layer in blocks to the rectangle with upper left corner at (2,3) and a lower right corner of (4, 10), the canvas now looks like the following:

fig2.jpg

After adding a layer of blocks in the rectangle with upper left corner at (3,8) and a lower right corner of (5, 15), the canvas now looks like the following:

fig3.jpg

If Blockhead were to ask how many blocks are currently in the artwork in the rectangle with upper left corner (1,1) and lower right corner (5,15), you would tell him 48.

Now, if we remove a layer of blocks from the rectangle with upper left corner at (3,6) and a lower right corner of (4, 12), the canvas now looks like the following:

fig4.jpg

If Blockhead were to ask how many blocks are now in the artwork in the rectangle with upper left corner (3,5) and lower right corner (4,13), you would tell him 10.

“Beautiful!” exclaims Blockhead.

Input

The first line in each test case are two integers r and c, 1 <= r <= 12, 1 <= c <= 106, where r is the number of rows and c is the number of columns in the canvas.

The next line of input contains an integer n, 1 <= n <= 104.

The following n lines of input contain operations and queries done on the initially empty canvas. The operations will be in the following format:

[operation] [top left row] [top left column] [bottom right row] [bottom right column]

[operation] is a character, either “a” when a layer of blocks is being added, “r” when a layer of blocks is being removed, and “q” when Blockhead is asking you for the number of blocks in a region.

The remaining values on the line correspond to the top left and bottom right corners of the rectangle.

Note: You will never be asked to remove a block from a cell that has no blocks in it.

Output

For each “q” operation in the input, you should output, on a line by itself, the number of blocks in the region of interest.

Sample Input

5 15

5

a 2 3 4 10

a 3 8 5 15

q 1 1 5 15

r 3 6 4 12

q 3 5 4 13

Sample Output

48

10

Hint

题意

给你一个矩形,然后你需要维护三个操作

使得一个矩形区域都加1,使得一个矩形区域减一,查询一个矩形区域的和

题解

仔细观察可以知道,这个矩形的宽才12,所以直接暴力一维线段树就好了。

二维线段树会mle

所以我们对于每一行都单独处理就好了,这样就能把空间省下来。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;
struct node{
typedef int SgTreeDataType;
struct treenode
{
int L , R ;
SgTreeDataType sum , lazy;
void update(SgTreeDataType v)
{
sum += (R-L+1)*v;
lazy += v;
}
}; treenode tree[maxn*4]; inline void push_down(int o)
{
SgTreeDataType lazyval = tree[o].lazy;
tree[2*o].update(lazyval) ; tree[2*o+1].update(lazyval);
tree[o].lazy = 0;
} inline void push_up(int o)
{
tree[o].sum = tree[2*o].sum + tree[2*o+1].sum;
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R,tree[o].sum = tree[o].lazy = 0;
if (R > L)
{
int mid = (L+R) >> 1;
build_tree(L,mid,o*2);
build_tree(mid+1,R,o*2+1);
}
} inline void update(int QL,int QR,SgTreeDataType v,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) tree[o].update(v);
else
{
push_down(o);
int mid = (L+R)>>1;
if (QL <= mid) update(QL,QR,v,o*2);
if (QR > mid) update(QL,QR,v,o*2+1);
push_up(o);
}
} inline SgTreeDataType query(int QL,int QR,int o)
{
int L = tree[o].L , R = tree[o].R;
if (QL <= L && R <= QR) return tree[o].sum;
else
{
push_down(o);
int mid = (L+R)>>1;
SgTreeDataType res = 0;
if (QL <= mid) res += query(QL,QR,2*o);
if (QR > mid) res += query(QL,QR,2*o+1);
push_up(o);
return res;
}
}
}T;
int r,c;
int ans[10005];
string op[10005];
int x1[10005],Y1[10005],x2[10005],y2[10005];
int main()
{
scanf("%d%d",&r,&c);
int m;scanf("%d",&m);
for(int i=1;i<=m;i++)
cin>>op[i],scanf("%d%d%d%d",&x1[i],&Y1[i],&x2[i],&y2[i]);
for(int i=1;i<=r;i++){
T.build_tree(1,c,1);
for(int j=1;j<=m;j++){
if(x1[j]<=i&&i<=x2[j]){
if(op[j][0]=='q')ans[j]+=T.query(Y1[j],y2[j],1);
if(op[j][0]=='a')T.update(Y1[j],y2[j],1,1);
if(op[j][0]=='r')T.update(Y1[j],y2[j],-1,1);
}
}
}
for(int i=1;i<=m;i++)
if(op[i][0]=='q')
cout<<ans[i]<<endl; }

Xtreme9.0 - Block Art 线段树的更多相关文章

  1. HDU5023:A Corrupt Mayor's Performance Art(线段树区域更新+二进制)

    http://acm.hdu.edu.cn/showproblem.php?pid=5023 Problem Description Corrupt governors always find way ...

  2. hdu 5023 A Corrupt Mayor's Performance Art 线段树

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  3. hdu----(5023)A Corrupt Mayor's Performance Art(线段树区间更新以及区间查询)

    A Corrupt Mayor's Performance Art Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100 ...

  4. HDU 5023 A Corrupt Mayor's Performance Art 线段树区间更新+状态压缩

    Link:  http://acm.hdu.edu.cn/showproblem.php?pid=5023 #include <cstdio> #include <cstring&g ...

  5. 线段树 poj 1436

    题目大意:给出n条垂直于x轴的线段的数据y1,y2,x,求出有几个三条线段一组的三元组并且他们兩兩能相见的.思路:对y轴建树,将x排序,然后按顺序边询问边擦入,用mark[i][j]表示j往左可以看到 ...

  6. zkw线段树详解

    转载自:http://blog.csdn.net/qq_18455665/article/details/50989113 前言 首先说说出处: 清华大学 张昆玮(zkw) - ppt <统计的 ...

  7. HDU4288 Coder(线段树)

    注意添加到集合中的数是升序的,先将数据读入,再离散化. sum[rt][i]表示此节点的区域位置对5取模为i的数的和,删除一个数则右边的数循环左移一位,添加一个数则右边数循环右移一位,相当于循环左移4 ...

  8. HDU4288:Coder(线段树单点更新版 && 暴力版)

    Problem Description In mathematics and computer science, an algorithm describes a set of procedures ...

  9. hdu4419 Colourful Rectangle 12年杭州网络赛 扫描线+线段树

    题意:给定n个矩形,每个矩形有一种颜色,RGB中的一种.相交的部分可能为RG,RB,GB,RGB,问这n个矩形覆盖的面积中,7种颜色的面积分别为多少 思路:把x轴离散化做扫描线,线段树维护一个扫描区间 ...

随机推荐

  1. J2EE的体系结构是指什么?

    J2EE 即Java2平台企业版,它提供了基于组件的方式来设计.开发.组装和部署企业应用.J2EE使用多层分布式的应用模型,这个多层通常通过三层或四层来实现: 客户层,运行在客户计算机上的组件. We ...

  2. 【NOI】2017 蚯蚓排队(BZOJ 4943,LOJ 2303) 模拟+hash

    [题目]#2303. 「NOI2017」蚯蚓排队 [题意]给定n条长度不超过6的蚯蚓,初始各自在一个队伍.m次操作:1.将i号蚯蚓和j号蚯蚓的队伍合并(保证i为队尾,j为队首).2.将i号蚯蚓和它后面 ...

  3. 【转】[.Net] 确定当前网站的物理文件路径

    确定当前网站的物理文件路径 在应用程序中,您可能需要确定服务器上的文件或其他资源的路径.例如,如果应用程序以编程方式对文本文件进行读写操作,则必须为用于读取和写入的方法提供该文件的完整物理路径. 将物 ...

  4. Linux - trap 命令

    trap 命令用于指定在接收到信号后将要采取的动作,常见的用途是在脚本程序被中断时完成清理工作.当shell接收到sigspec指定的信号时,arg参数(命令)将会被读取,并被执行. trap 信号参 ...

  5. 无法执行该操作,因为链接服务器 "xxxxx" 的 OLE DB 访问接口 "SQLNCLI" 无法启动分布式事务

    在存储过程中使用事务,并且使用链接服务器时,报类似下面的错误 链接服务器"****"的 OLE DB 访问接口 "SQLNCLI10" 返回了消息 " ...

  6. 无法在线安装Genymotion Eclipse插件,显示”There are no categoryzed items“

    去掉对“Group items by category"的勾选.

  7. mysqldump只导出表结构或只导出数据的实现方法【转】

    mysql mysqldump 只导出表结构 不导出数据 mysqldump --opt -d 数据库名 -u root -p > xxx.sql 备份数据库 #mysqldump 数据库名 & ...

  8. 001_shell经典案例

    一. 二. -n, --numeric-sort compare according to string numerical value -k, --key=KEYDEF sort via a key ...

  9. Qt 数字和字符处理总结

    1. 四舍五入保留小数几位 QString str="12.3456789"; double d1=str.toDouble(); qDebug()<<"d1 ...

  10. 由time.tzname返回值引发的对str、bytes转换时编码问题实践

    Windows 10家庭中文版,Python 3.6.4, 下午复习了一下time模块,熟悉一下其中的各种时间格式的转换:时间戳浮点数.struct_tm.字符串,还算顺利. 可是,测试其中的time ...