题面

概率生成函数

对于菜鸡博主来说好难啊

其一般形式为$F(x)=\sum\limits_{i=0}^∞[x==i]x_i$,第i项的系数表示离散变量x取值为i的概率

一般的两个性质:$F(1)=1,E(x)=F'(1)$

这里用$F(x)$表示结束时的串长的概率生成函数,$G(x)$表示到长度到达...而串未结束的概率生成函数,字符串长为len,那么有:

①$F(x)+G(x)=x*G(x)+1$,含义是长度达到x的概率:左边就是字面意思,右边$x*G(x)$表示x-1时未结束的概率,然后加上放的一次

②$\frac{1}{m}^{len}*G(x)=\sum\limits_{i=1}^{len} isb[i]*\frac{1}{m}^{len-i}*F(x)$,其中$isb_i$表示i是否是一个border,整个式子含义是字符串的结束:左边就是在一个没结束的串左边恰好补上所需要的len个字母,右边表示可能正好补了一个border,然后就也结束了

然后开始倒腾这两个式子,我们的目标是捣腾出$F'(1)$,也就是$E(x)$,而直接对①求导就可以得到$F'(x)$与$G(x)$的关系:

$F'(x)-G'(x)=G'(x)*x+G(x)$

$F'(1)=G(1)$

然后直接把$F(1)=1$扔进第二个式子里

$G(1)=\sum\limits_{i=0}^n isb_i m^i$

就是这样

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int T,p,n,pos,ans,num[N],nxt[N],pw[N];
int main()
{
scanf("%d",&p),pw[]=;
for(int i=;i<=;i++)
pw[i]=pw[i-]*p%mod;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d",&num[i]);
for(int i=,o=;i<n;i++)
{
while(o&&num[o]!=num[i]) o=nxt[o];
nxt[i+]=(num[o]==num[i])?++o:;
}
pos=n,ans=;
while(pos) ans=(ans+pw[pos])%mod,pos=nxt[pos];
printf("%04d\n",ans);
}
return ;
}

解题:CTSC 2006 歌唱王国的更多相关文章

  1. 【BZOJ1152】歌唱王国(生成函数,KMP)

    [BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...

  2. [CTSC2006]歌唱王国

    [CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...

  3. bzoi1152 [CTSC2006]歌唱王国Singleland

    [CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...

  4. 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差

    [题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...

  5. P4548-[CTSC2006]歌唱王国【概率生成函数,KMP】

    正题 题目链接:https://www.luogu.com.cn/problem/P4548 题目大意 \(t\)次询问,给出一个长度为\(m\)的串\(S\)和一个空串\(T\),每次在\(T\)后 ...

  6. 【BZOJ】1152: [CTSC2006]歌唱王国Singleland

    题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/19 ...

  7. 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)

    题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...

  8. Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希

    传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...

  9. luogu P4548 [CTSC2006]歌唱王国

    传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...

随机推荐

  1. 20155218《网络对抗》MSF基础应用

    20155218<网络对抗>MSF基础应用 实验过程 1.一个主动攻击实践,如ms08_067; 首先使用 search ms08_067查询一下该漏洞: show target 查看可以 ...

  2. web窗体的运用

    using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace WebAp ...

  3. 《图说VR入门》——入门汇总

    本文章由cartzhang编写,转载请注明出处. 所有权利保留. 文章链接:http://blog.csdn.net/cartzhang/article/details/53818922 作者:car ...

  4. 10、MySQL 的复制

    10.1 复制的概述 10.2 配置复制 10.3 复制的原理 有两种 1.基于sql语句的复制:传输数据少(sql语句文件),就能复制大量的数据,不过由于一些自定义的函数问题,会有一些限制: 2.基 ...

  5. Luogu P4322 [JSOI2016]最佳团体

    JZdalao昨天上课讲的题目,话说JSOI的题目是真的不难,ZJOI的题目真的是虐啊! 题意很简单,抽象一下就是:有一棵树,一次只能选从根到某个节点上的链上的所有点,问从中取出k个节点所得到的总价值 ...

  6. 移动端页面滑动时候警告:Unable to preventDefault inside passive event listener due to target being treated as passive.

    移动端项目中,在滚动的时候,会报出以下提示: [Intervention] Unable to preventDefault inside passive event listener due to ...

  7. Partition4:增加分区

    在关系型 DB中,分区表经常使用DateKey(int 数据类型)作为Partition Column,每个月的数据填充到同一个Partition中,由于在Fore-End呈现的报表大多数是基于Mon ...

  8. 解决Docker容器时区及时间不同步的问题

    前几天在测试应用的功能时,发现存入数据库中的数据create_time或者update_time字段总是错误,其他数据都是正常的,只有关于时间的字段是错误的. 进入linux服务器中查看,也没有任何的 ...

  9. git笔记:通过给grunt-inline打tag看tag操作

    晚上review了下grunt-inline的issues,看到有个兄弟pull request,修正了0.3.0版本的一个bug.于是就merge了下,然后发布了0.3.1版本(这里). npm p ...

  10. Js_特效II

    字号缩放 让文字大点,让更多的用户看的更清楚.(也可以把字体变为百分比来实现)<script type="text/javascript">  function doZ ...