A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.
  • If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line YES if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO if not. Then if the answer is YES, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7

8 6 5 7 10 8 11

Sample Output 1:

YES

5 7 6 8 11 10 8

Sample Input 2:

7

8 10 11 8 6 7 5

Sample Output 2:

YES

11 8 10 7 5 6 8

Sample Input 3:

7

8 6 8 5 10 9 11

Sample Output 3:

NO

算法思路简单描述:先不管是不是BST,先根据输入序列,插入建树(BST),如果建完之后的树,它的前序遍历与所给序列相同,那么所给的序列显然是可以构成BST的,应该给出YES,当然所给的序列还应和镜像的遍历比较,如果相同,也可以给出YES。

所以可以用三个数组存(输入序列,树的前序遍历,镜像树的前序遍历),但因为数组不太好比较,用vector更加方便,因为它重载了==符号。

#include<bits/stdc++.h>
using namespace std;
int N;
struct node{
int data;
node* lchild;
node* rchild;
};
void insert(node* &root,int data){
if(root==NULL){
root=new node;
root->data=data;
root->lchild=root->rchild=NULL;
return;
}
if(data<root->data)insert(root->lchild,data);
else insert(root->rchild,data);
}
void preOrder(node* root,vector<int>& vi){
if(root==NULL)return;
vi.push_back(root->data);
preOrder(root->lchild,vi);
preOrder(root->rchild,vi);
}
void preOrderMirror(node* root,vector<int>& vi){
if(root==NULL)return;
vi.push_back(root->data);
preOrderMirror(root->rchild,vi);
preOrderMirror(root->lchild,vi);
}
void postOrder(node* root,vector<int>& vi){
if(root==NULL) return;
postOrder(root->lchild,vi);
postOrder(root->rchild,vi);
vi.push_back(root->data);
}
void postOrderMirror(node* root,vector<int>& vi){
if(root==NULL) return;
postOrderMirror(root->rchild,vi);
postOrderMirror(root->lchild,vi);
vi.push_back(root->data);
}
vector<int> origin,pre,preM,post,postM;
int main(){
cin>>N;
int data;
node* root=NULL;// final root
for(int i=0;i<N;i++){
scanf("%d",&data);
origin.push_back(data);
insert(root,data);
}
preOrder(root,pre);
preOrderMirror(root,preM);
postOrder(root,post);
postOrderMirror(root,postM);
if(origin==pre){
printf("YES\n");
for(int i=0;i<post.size();i++){
printf("%d",post[i]);
if(i<post.size()-1)printf(" ");
}
}
else if(origin==preM){
printf("YES\n");
for(int i=0;i<postM.size();i++){
printf("%d",postM[i]);
if(i<postM.size()-1)printf(" ");
}
}
else{
printf("NO\n");
}
return 0;
}

A1043 Is It a Binary Search Tree (25 分)的更多相关文章

  1. PAT 甲级 1043 Is It a Binary Search Tree (25 分)(链表建树前序后序遍历)*不会用链表建树 *看不懂题

    1043 Is It a Binary Search Tree (25 分)   A Binary Search Tree (BST) is recursively defined as a bina ...

  2. 1043 Is It a Binary Search Tree (25分)(树的插入)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  3. PAT 1043 Is It a Binary Search Tree (25分) 由前序遍历得到二叉搜索树的后序遍历

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  4. 【PAT甲级】1043 Is It a Binary Search Tree (25 分)(判断是否为BST的先序遍历并输出后序遍历)

    题意: 输入一个正整数N(<=1000),接下来输入N个点的序号.如果刚才输入的序列是一颗二叉搜索树或它的镜像(中心翻转180°)的先序遍历,那么输出YES并输出它的后序遍历,否则输出NO. t ...

  5. 04-树7. Search in a Binary Search Tree (25)

    04-树7. Search in a Binary Search Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 ...

  6. pat04-树7. Search in a Binary Search Tree (25)

    04-树7. Search in a Binary Search Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 ...

  7. pat1043. Is It a Binary Search Tree (25)

    1043. Is It a Binary Search Tree (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN ...

  8. PTA 04-树6 Complete Binary Search Tree (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/669 5-7 Complete Binary Search Tree   (30分) A ...

  9. PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)

    1064 Complete Binary Search Tree (30 分)   A Binary Search Tree (BST) is recursively defined as a bin ...

  10. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

随机推荐

  1. 过滤掉URL中的参数部分

    //将超链接的参数部分滤掉 ?xxx if(url.contains("?")){ url=url.substring(0,url.indexOf("?")); ...

  2. Tidb缩减tikv机器

    生产环境下,如何缩减机器? 1.首先是检查出来那个tikv节点需要缩减 " -d store { ", "stores": [ { "store&qu ...

  3. 粗略的整改一下blog

    一.先找个简约的模板:看个人喜好咯 二.页面定制CSS: 1.首先,查看主页源码,了解一下各个标签的id,引用的class等 2.通过操作相应的id,class,和标签,进行个性化.这里需要具备看懂和 ...

  4. dns bind配置教程

    实验环境 三台centos7虚拟机,一台ip为192.168.52.130,一台为192.168.52.131,最后一台为192.168.52.132 安装bind 使用yum -y insall b ...

  5. Phoenix安装配置

    下载Phoenix     在网站http://phoenix.apache.org/download.html找到对应HBase版本的安装程序,并下载安装包,解压安装程序到指定目录 [root@ha ...

  6. 【Ansible 文档】【译文】网络支持

    Networking Support 网络支持 Working with Networking Devices 使用网络设备 自从Ansible 2.1开始,你现在可以使用成熟模型 - 编写 play ...

  7. Swift 实践篇之链式 UI 代码

    https://blog.nswebfrog.com/2017/10/20/swift-practice-ui-chaining-code/

  8. Redis系列五:redis键管理和redis数据库管理

    一.redis键管理 1 键重命名 rename oldKey newkey //格式rename oldKey newKey //若oldKey之前存在则被覆盖set name james :set ...

  9. BZOJ3569:DZY Loves Chinese II(线性基)

    Description 神校XJ之学霸兮,Dzy皇考曰JC. 摄提贞于孟陬兮,惟庚寅Dzy以降. 纷Dzy既有此内美兮,又重之以修能. 遂降临于OI界,欲以神力而凌♂辱众生.   今Dzy有一魞歄图, ...

  10. 【转】form data和request payload的区别

    HTML <form> 标签的 enctype 属性 在下面的例子中,表单数据会在未编码的情况下进行发送: <form action="form_action.asp&qu ...