poj2115
构造出模线性方程c * x = b - a mod (2 ^ k)
很容易解。
利用LRJ书上的方法。
#include <iostream> using namespace std; #define LL long long int LL ext_gcd(LL a, LL b, LL& x, LL& y)
{
LL t, ret;
if (!b){
x = 1, y = 0;
return a;
}
ret = ext_gcd(b, a%b, x, y);
t = x, x = y, y = t - a / b*y;
return ret;
}
//ax = b (mod n)
void gcd(LL a, LL b, LL &d, LL &x, LL &y)
{
if (!b)
{
d = a, x = 1, y = 0;
}
else
{
gcd(b, a %b, d, y, x);
y -= x * (a / b);
}
}
LL modular_linear_equation(LL a, LL b, LL n)
{
long long x, y, e, d;
gcd(a, n, d, x, y);
if (b % d) return -1;
e = b / d * x % n + n;
return e % (n / d);
}
int main()
{
////c * x = b - a mod (2 ^ k)
int a, b, c, k;
while (cin >> a >> b >> c >> k && (a || b || c || k))
{
LL num = modular_linear_equation(c, b - a, 1LL << k);
if (num == -1)
{
cout << "FOREVER" << endl;
continue;
}
cout << num << endl;
}
}
poj2115的更多相关文章
- POJ2115——C Looooops(扩展欧几里德+求解模线性方程)
C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...
- poj2115 C Looooops(exgcd)
poj2115 C Looooops 题意: 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束. 若在有限次内结束,则输出循环次数. 否则输出死循环. ...
- poj2115(扩展欧基里德定理)
题目链接:https://vjudge.net/problem/POJ-2115 题意:模拟for循环for(int i=A;i!=B;i+=C),且数据范围为k位无符号数以内,即0~1<< ...
- POJ2115 C Looooops 扩展欧几里德
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2115 题意 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次 ...
- POJ2115 C Looooops[扩展欧几里得]
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 24355 Accepted: 6788 Descr ...
- POJ2115 C Looooops(线性同余方程)
无符号k位数溢出就相当于mod 2k,然后设循环x次A等于B,就可以列出方程: $$ Cx+A \equiv B \pmod {2^k} $$ $$ Cx \equiv B-A \pmod {2^k} ...
- POJ2115 C Looooops 模线性方程(扩展欧几里得)
题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...
- POJ2115 - C Looooops(扩展欧几里得)
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...
- POJ2115 C Looooops(数论)
题目链接. 分析: 数论了解的还不算太多,解的时候,碰到了不小的麻烦. 设答案为x,n = (1<<k), 则 (A+C*x) % n == B 即 (A+C*x) ≡ B (mod n) ...
- POJ2115(扩展欧几里得)
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 23700 Accepted: 6550 Descr ...
随机推荐
- android view的多种移动方式(测试集合)
前言 由于最近在写一个涉及移动方面的自定义View,在做移动的时候用到了类似offsetTopAndBottom .setTranslationY.scrollTo.scrollBy等方法,对于他们的 ...
- knnMatch
先马克下,回头再看:http://blog.csdn.net/zkl99999/article/details/47950425 http://blog.csdn.net/yangtrees/arti ...
- Carbon 的 diffForHumans 方法
Carbon 是继承自 PHP DateTime 类 的子类,但比后者提供了更加丰富.更加语义化的 API.其中一个比较实用的 API 就是 diffForHumans 方法,几乎每个用 Larave ...
- jquery 鼠标事件汇总
鼠标事件是指用户在移动鼠标光标或者点击任意鼠标键时触发的事件,jQuery中封装了基本上所有的鼠标事件包括点击,双击,移动等鼠标事件,下面我们就来看下这些事件的语法和用法 鼠标事件是在用户移动鼠标 ...
- Sublime Text 使用介绍/全套快捷键及插件推荐
如果说Notepad++是一款不错Code神器,那么Sublime Text应当称得上是神器滴哥.Sublime Text最大的优点就是跨平台,Mac和Windows均可完美使用:其次是强大的插件支持 ...
- Java编程的逻辑 (20) - 为什么要有抽象类?
本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http:/ ...
- Gearman In Action
分布式任务系统是一个常见的需求,如果将 Gearman 作为 build block 来搭建这个系统的话,这样能够 make your life much easier. 首先看看 Gearman 是 ...
- 【LOJ】#2569. 「APIO2016」最大差分
题解 第一个子任务直接询问最大最小,每次可以问出来两个,再最大最小-1再问两个,最多问\(\frac{N + 1}{2}\)次就还原出了序列 第二个子任务由于差分肯定会大于等于\(\lceil \fr ...
- ubuntu下hadoop,spark配置
转载来自:http://www.cnblogs.com/spark-china/p/3941878.html 在VMWare 中准备第二.第三台运行Ubuntu系统的机器: 在VMWare中构建第 ...
- P1203 [USACO1.1]坏掉的项链Broken Necklace
P1203 [USACO1.1]坏掉的项链Broken Necklace不错的断环为链的模拟题,开成三倍,有很多细节要考虑,比如总长度要<=n,开头第一个是w等等. #include<bi ...