题解

给你一棵基环树,环长为奇数(两点间最短路径只有一条)

维护两点间路径最大子段和,支持把一条路径上的值取反

显然只要断开一条边维护树上的值,然后对于那条边分类讨论就好了

维护树上的值可以通过树链剖分,然后对于左右附加一个值和区间跑最大子段和

把变量名打错了orz,死亡

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M;
struct node {
int to,next;int64 val;
}E[MAXN * 2];
int head[MAXN],sumE;
int fa[MAXN],dfn[MAXN],siz[MAXN],dep[MAXN],idx,son[MAXN],top[MAXN],seq[MAXN];
int md[MAXN * 2][20],len[MAXN * 2],pos[MAXN],bud; int st,ed;int64 ev;
int64 worth[MAXN];
bool vis[MAXN];
void add(int u,int v,int64 c) {
E[++sumE].to = v;
E[sumE].next = head[u];
E[sumE].val = c;
head[u] = sumE;
}
int min_dep(int a,int b) {
return dep[a] < dep[b] ? a : b;
}
int lca(int a,int b) {
a = pos[a];b = pos[b];
if(a > b) swap(a,b);
int l = len[b - a + 1];
return min_dep(md[a][l],md[b - (1 << l) + 1][l]);
}
int dis(int a,int b) {
return dep[a] + dep[b] - 2 * dep[lca(a,b)] + 1;
}
void dfs1(int u) {
dep[u] = dep[fa[u]] + 1;
vis[u] = 1;
pos[u] = ++bud;md[bud][0] = u;
siz[u] = 1;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v]) {
fa[v] = u;
dfs1(v);
md[++bud][0] = u;
worth[v] = E[i].val;
siz[u] += siz[v];
if(siz[v] > siz[son[u]]) son[u] = v;
}
else if(dep[v] < dep[u] && v != fa[u]) {
st = u;ed = v;ev = E[i].val;
}
}
}
void dfs2(int u) {
vis[u] = 1;
dfn[u] = ++idx;
seq[idx] = u;
if(!top[u]) top[u] = u;
if(son[u]) {
top[son[u]] = top[u];
dfs2(son[u]);
}
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v] && !(u == st && v == ed) && !(u == ed && v == st)) dfs2(v);
}
}
namespace seg_tr {
struct node {
int L,R;
int64 lmax,lmin,rmax,rmin,sum,val,mval;
bool resign;
}tr[MAXN * 4];
#define lc(u) u << 1
#define rc(u) u << 1 | 1
#define sum(u) tr[u].sum
#define lmin(u) tr[u].lmin
#define rmin(u) tr[u].rmin
#define lmax(u) tr[u].lmax
#define rmax(u) tr[u].rmax
#define val(u) tr[u].val
#define mval(u) tr[u].mval
void resign(int u) {
sum(u) = -sum(u);
lmin(u) = -lmin(u);lmax(u) = -lmax(u);
swap(lmin(u),lmax(u));
rmin(u) = -rmin(u);rmax(u) = -rmax(u);
swap(rmin(u),rmax(u));
val(u) = -val(u);mval(u) = -mval(u);
swap(val(u),mval(u));
tr[u].resign ^= 1;
}
void push_down(int u) {
if(tr[u].resign) {
resign(lc(u));resign(rc(u));
tr[u].resign = 0;
}
}
void update(int u) {
sum(u) = sum(lc(u)) + sum(rc(u));
lmax(u) = max(lmax(lc(u)),sum(lc(u)) + lmax(rc(u)));
lmin(u) = min(lmin(lc(u)),sum(lc(u)) + lmin(rc(u)));
rmax(u) = max(rmax(rc(u)),rmax(lc(u)) + sum(rc(u)));
rmin(u) = min(rmin(rc(u)),rmin(lc(u)) + sum(rc(u)));
val(u) = max(val(lc(u)),val(rc(u)));
val(u) = max(val(u),rmax(lc(u)) + lmax(rc(u)));
mval(u) = min(mval(lc(u)),mval(rc(u)));
mval(u) = min(mval(u),rmin(lc(u)) + lmin(rc(u)));
}
void build(int u,int l,int r) {
tr[u].L = l;tr[u].R = r;
if(l == r) {
lmax(u) = rmax(u) = val(u) = max(0LL,worth[seq[l]]);
lmin(u) = rmin(u) = mval(u) = min(0LL,worth[seq[l]]);
sum(u) = worth[seq[l]];
return;
}
int mid = (l + r) >> 1;
build(u << 1,l,mid);
build(u << 1 | 1,mid + 1,r);
update(u);
}
int64 query_val(int u,int l,int r,int64 &v,bool on) {
if(tr[u].L == l && tr[u].R == r) {
int64 res = val(u);
if(on) res = max(res,v + rmax(u));
else res = max(res,v + lmax(u));
if(on) v = max(v + sum(u),lmax(u));
else v = max(v + sum(u),rmax(u));
return res;
}
push_down(u);
int mid = (tr[u].L + tr[u].R) >> 1;
if(r <= mid) return query_val(lc(u),l,r,v,on);
else if(l > mid) return query_val(rc(u),l,r,v,on);
else {
if(!on) {
int t = query_val(lc(u),l,mid,v,on);
int h = query_val(rc(u),mid + 1,r,v,on);
return max(t,h);
}
else {
int t = query_val(rc(u),mid + 1,r,v,on);
int h = query_val(lc(u),l,mid,v,on);
return max(t,h);
}
}
}
pair<int64,int64> query_max(int u,int l,int r,bool on) {
if(tr[u].L == l && tr[u].R == r) {
if(!on) return mp(lmax(u),sum(u));
else return mp(rmax(u),sum(u));
}
push_down(u);
int mid = (tr[u].L + tr[u].R) >> 1;
if(r <= mid) return query_max(lc(u),l,r,on);
else if(l > mid) return query_max(rc(u),l,r,on);
else {
pair<int64,int64> t,h;
t = query_max(lc(u),l,mid,on);
h = query_max(rc(u),mid + 1,r,on);
if(!on) {
return mp(max(t.fi,h.fi + t.se),t.se + h.se);
}
else {
return mp(max(h.fi,t.fi + h.se),t.se + h.se);
}
}
}
void change(int u,int l,int r) {
if(tr[u].L == l && tr[u].R == r) {
resign(u);return;
}
push_down(u);
int mid = (tr[u].L + tr[u].R) >> 1;
if(r <= mid) change(lc(u),l,r);
else if(l > mid) change(rc(u),l,r);
else {
change(lc(u),l,mid);change(rc(u),mid + 1,r);
}
update(u);
}
int64 Query_max(int l,int r,int64 v,bool on) {
pair<int64,int64> t = query_max(1,l,r,on);
return max(t.fi,v + t.se);
}
void Change(int l,int r) {
change(1,l,r);
}
int64 Query_val(int l,int r,int64 v,bool on) {
return query_val(1,l,r,v,on);
}
}
void Init() {
read(N);
int u,v;int64 c;
for(int i = 1 ; i <= N ; ++i) {
read(u);read(v);read(c);
add(u,v,c);add(v,u,c);
}
dfs1(1);
memset(vis,0,sizeof(vis));
dfs2(1);
seg_tr::build(1,1,N);
for(int j = 1 ; j <= 18 ; ++j) {
for(int i = 1 ; i <= bud ; ++i) {
if(i + (1 << j) - 1 > bud) break;
md[i][j] = min_dep(md[i][j - 1],md[i + (1 << j - 1)][j - 1]);
}
}
for(int i = 2 ; i <= bud ; ++i) len[i] = len[i / 2] + 1;
}
void Change_Path(int u,int v) {
while(top[u] != top[v]) {
if(dfn[top[u]] < dfn[top[v]]) swap(u,v);
seg_tr::Change(dfn[top[u]],dfn[u]);
u = fa[top[u]];
}
if(dep[u] > dep[v]) swap(u,v);
if(u != v) seg_tr::Change(dfn[u] + 1,dfn[v]);
}
vector<pii> b;
pair<int64,int64> Query_Path(int u,int v,int64 pre) {
int f = lca(u,v);
int64 ans = pre;
b.clear();
while(top[u] != top[f]) {
ans = max(ans,seg_tr::Query_val(dfn[top[u]],dfn[u],pre,1));
pre = seg_tr::Query_max(dfn[top[u]],dfn[u],pre,0);
u = fa[top[u]];
}
if(f != u) {
ans = max(ans,seg_tr::Query_val(dfn[f] + 1,dfn[u],pre,1));
pre = seg_tr::Query_max(dfn[f] + 1,dfn[u],pre,0);
}
while(top[v] != top[f]) {
b.pb(mp(top[v],v));
v = fa[top[v]];
}
if(f != v) {
b.pb(mp(seq[dfn[f] + 1],v));
}
for(int i = b.size() - 1 ; i >= 0 ; --i) {
ans = max(ans,seg_tr::Query_val(dfn[b[i].fi],dfn[b[i].se],pre,0));
pre = seg_tr::Query_max(dfn[b[i].fi],dfn[b[i].se],pre,1);
}
return mp(ans,pre);
}
void Pf(int u,int v) {
if(dis(u,st) + dis(ed,v) > dis(u,v)) Change_Path(u,v);
else {Change_Path(u,st);Change_Path(ed,v);ev = -ev;}
}
int64 P(int u,int v) {
if(dis(u,st) + dis(ed,v) > dis(u,v)) return Query_Path(u,v,0).fi;
else {
pair<int64,int64> t = Query_Path(u,st,0);
t.se = max(0LL,t.se + ev);
t.fi = max(t.fi,Query_Path(ed,v,t.se).fi);
return t.fi;
}
}
void Solve() {
read(M);
char op[5];
int u,v;
for(int i = 1 ; i <= M ; ++i) {
scanf("%s",op + 1);read(u);read(v);
if(dis(st,u) + dis(ed,v) > dis(st,v) + dis(ed,u)) swap(u,v);
if(op[1] == 'f') Pf(u,v);
else {out(P(u,v));enter;}
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}

【CodeChef】QTREE- Queries on tree again!的更多相关文章

  1. 【CodeChef】Prime Distance On Tree

    vjudge 给定一棵边长都是\(1\)的树,求有多少条路径长度为质数 树上路径自然是点分治去搞,但是发现要求是长度为质数,总不能对每一个质数都判断一遍吧 自然是不行的,这个东西显然是一个卷积,我们合 ...

  2. 【BZOJ2959】长跑(Link-Cut Tree,并查集)

    [BZOJ2959]长跑(Link-Cut Tree,并查集) 题面 BZOJ 题解 如果保证不出现环的话 妥妥的\(LCT\)傻逼题 现在可能会出现环 环有什么影响? 那就可以沿着环把所有点全部走一 ...

  3. 【BZOJ2588】Count On a Tree(主席树)

    [BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...

  4. 【BZOJ2816】【ZJOI2012】网络(Link-Cut Tree)

    [BZOJ2816][ZJOI2012]网络(Link-Cut Tree) 题面 题目描述 有一个无向图G,每个点有个权值,每条边有一个颜色.这个无向图满足以下两个条件: 对于任意节点连出去的边中,相 ...

  5. 【CodeChef】Querying on a Grid(分治,最短路)

    [CodeChef]Querying on a Grid(分治,最短路) 题面 Vjudge CodeChef 题解 考虑分治处理这个问题,每次取一个\(mid\),对于\(mid\)上的三个点构建最 ...

  6. 【CF434E】Furukawa Nagisa's Tree 点分治

    [CF434E]Furukawa Nagisa's Tree 题意:一棵n个点的树,点有点权.定义$G(a,b)$表示:我们将树上从a走到b经过的点都拿出来,设这些点的点权分别为$z_0,z_1... ...

  7. 【CF725G】Messages on a Tree 树链剖分+线段树

    [CF725G]Messages on a Tree 题意:给你一棵n+1个节点的树,0号节点是树根,在编号为1到n的节点上各有一只跳蚤,0号节点是跳蚤国王.现在一些跳蚤要给跳蚤国王发信息.具体的信息 ...

  8. 【SPOJ】QTREE7(Link-Cut Tree)

    [SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...

  9. 【SPOJ】Count On A Tree II(树上莫队)

    [SPOJ]Count On A Tree II(树上莫队) 题面 洛谷 Vjudge 洛谷上有翻译啦 题解 如果不在树上就是一个很裸很裸的莫队 现在在树上,就是一个很裸很裸的树上莫队啦. #incl ...

  10. 【CodeChef】Palindromeness(回文树)

    [CodeChef]Palindromeness(回文树) 题面 Vjudge CodeChef 中文版题面 题解 构建回文树,现在的问题就是要求出当前回文串节点的长度的一半的那个回文串所代表的节点 ...

随机推荐

  1. CF438D The Child and Sequence(线段树)

    题目链接:CF原网  洛谷 题目大意:维护一个长度为 $n$ 的正整数序列 $a$,支持单点修改,区间取模,区间求和.共 $m$ 个操作. $1\le n,m\le 10^5$.其它数均为非负整数且 ...

  2. 【洛谷P1330】封锁阳光大学

    题目大意:给定一个 N 个点,M 条边的无向图,现在要选出图中的一个顶点集合,使得集合种的顶点不直接相邻,且这张图的所有边都被该顶点集合覆盖,求该顶点集合大小的最小值,若不能完成覆盖,则输出 impo ...

  3. (转)eclipse 报错 :The method list(String, Object[]) is ambiguous for the type BaseHibernateDao

    背景:在开发过程中,经常遇到各种各样的编译问题,不断的总结,才能更好的提高效率. 描述 [报错] :The method list(String, Object[]) is ambiguous for ...

  4. svn:重命名文件之后,不允许提交

    1.错误代码 org.apache.subversion.javahl.ClientException: Illegal target for the requested operation svn: ...

  5. Hbuild开发App入门

    http://ask.dcloud.net.cn/article/89建议必看网站 http://www.html5plus.org/doc/h5p.html  API下载地址

  6. mysql 不同引擎的比较

    mysql 支持的默认引擎是InnoDB,其他的常用引擎包括MyISAM等,那么他们有什么差别呢. 首先执行 show engines; 来查看数据库当前支持的引擎. 可以看到mysql支持这么多不同 ...

  7. win32控制台变服务代码

    1.服务的主函数以及以及函数的声明,全局变量的定义 #define SERVICE_NAME "srv_follow" SERVICE_STATUS g_ServiceStatus ...

  8. Spark记录-Scala模式匹配

    Scala模式匹配 模式匹配是Scala函数值和闭包后第二大应用功能.Scala为模式匹配提供了极大的支持,处理消息. 模式匹配包括一系列备选项,每个替代项以关键字大小写为单位.每个替代方案包括一个模 ...

  9. Spring Boot 源码分析 数据源 + Mybatis 配置

    公司今年开始使用 Spring Boot 开发,当然使用 Spring Boot 也是大势所趋,尤其是现在微服务的趋向,当然是选择基于Spring Boot 的 Spring Cloud.(所谓的 S ...

  10. html5 canvas 奇怪的形状垂直渐变

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...