更多 LeetCode 题解笔记可以访问我的 github

描述

给定一个非空的整数数组,返回其中出现频率前 k 高的元素。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

说明:

  • 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。

解法一:排序算法(不满足时间复杂度要求)

拿到题目的时候,如果没有详细看说明的话,一般都会首先想到使用排序算法对元素按照频率由高到低进行排序,然后取前 \(k\) 个元素。但是这样做的时间复杂度是 \(O(n\log{n})\) 的, 不满足题目要求。虽然不满足题目要求,但是还是将求解程序写一下。

备注:在 LeetCode 中的运行时间也不是特别慢。

Java 实现

import java.util.Map;
import java.util.HashMap;
import java.util.List;
import java.util.ArrayList; class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// 统计元素的频率
Map<Integer, Integer> freqMap = new HashMap<>();
for (int num : nums) {
freqMap.put(num, freqMap.getOrDefault(num, 0) + 1);
} // 对元素按照频率进行降序排序
List<Map.Entry<Integer, Integer>> list = new ArrayList<>(freqMap.entrySet());
Collections.sort(list, new Comparator<Map.Entry<Integer, Integer>>() {
@Override
public int compare(Map.Entry<Integer, Integer> o1, Map.Entry<Integer, Integer> o2) {
return o2.getValue() - o1.getValue();
}
}); // 取出前k个元素
int count = 0;
List<Integer> ret = new ArrayList<>();
for (Map.Entry<Integer, Integer> entry : list) {
ret.add(entry.getKey());
++count;
if (count >= k) {
break;
}
}
return ret;
}
}
// Runtime: 18 ms
// Your runtime beats 62.23 % of java submissions.

Python 实现

class Solution:
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
# 统计元素的频率
freq_dict = dict()
for num in nums:
freq_dict[num] = freq_dict.get(num, 0) + 1 # 按照频率进行排序
freq_dict_sorted = sorted(freq_dict.items(), key=lambda x: x[1], reverse=True) # 取前k个元素返回
ret = list()
for i in range(k):
ret.append(freq_dict_sorted[i][0])
return ret
# Runtime: 52 ms
# Your runtime beats 71.83 % of python3 submissions.

复杂度分析

  • 时间复杂度:\(O(n\log{n})\),其中 \(n\) 表示数组的长度。
  • 空间复杂度:\(O(n)\),最极端的情况下(每个元素都不同),用于存储元素及其频率的 Map 需要存储 \(n\) 个键值对

解法二:最小堆

思路

进一步,为了满足时间复杂度要求,需要对解法一的排序过程进行改进。因为最终需要返回前 \(k\) 个频率最大的元素,可以想到借助堆这种数据结构。通过维护一个元素数目为 \(k\) 的最小堆,每次都将新的元素与堆顶端的元素(堆中频率最小的元素)进行比较,如果新的元素的频率比堆顶端的元素大,则弹出堆顶端的元素,将新的元素添加进堆中。最终,堆中的 \(k\) 个元素即为前 \(k\) 个高频元素。

Java 实现

class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// 统计元素的频率
Map<Integer, Integer> map = new HashMap<>(16);
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
} // 遍历map,用最小堆保存频率最大的k个元素
PriorityQueue<Integer> pq = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer a, Integer b) {
return map.get(a) - map.get(b);
}
});
// PriorityQueue<Integer> pq = new PriorityQueue<>(
// (a, b) -> map.get(a) - map.get(b)
// );
for (Integer key : map.keySet()) {
if (pq.size() < k) {
pq.add(key);
} else if (map.get(key) > map.get(pq.peek())) {
pq.remove();
pq.add(key);
}
} // 取出最小堆中的元素
List<Integer> ret = new ArrayList<>();
while (!pq.isEmpty()) {
ret.add(pq.remove());
} return ret;
}
}

Python 实现

class Solution:
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
# 统计元素的频率
freq_dict = dict()
for num in nums:
freq_dict[num] = freq_dict.get(num, 0) + 1 # 维护一个大小为k的最小堆,使得堆中的元素即为前k个高频元素
pq = list()
for key, value in freq_dict.items():
if len(pq) < k:
heapq.heappush(pq, (value, key))
elif value > pq[0][0]:
heapq.heapreplace(pq, (value, key)) # 取出堆中的元素
ret = list()
while pq:
ret.append(heapq.heappop(pq)[1])
return ret

复杂度分析

  • 时间复杂度:\(O(n\log{k})\),其中 \(n\) 表示数组的长度。首先,遍历一遍数组统计元素的频率,这一系列操作的时间复杂度是 \(O(n)\) 的;接着,遍历用于存储元素频率的 map,如果元素的频率大于最小堆中顶部的元素,则将顶部的元素删除并将该元素加入堆中,这一系列操作的时间复杂度是 \(O(n\log{k})\) 的;最后,弹出堆中的元素所需的时间复杂度是 \(O(k\log{k})\) 的。因此,总的时间复杂度是 \(O(n\log{k})\) 的。
  • 空间复杂度:\(O(n)\),最坏情况下(每个元素都不同),map 需要存储 \(n\) 个键值对,优先队列需要存储 \(k\) 个元素,因此,空间复杂度是 \(O(n)\) 的。

解法三:桶排序(bucket sort)

思路

最后,为了进一步优化时间复杂度,可以采用桶排序(bucket sort),即用空间复杂度换取时间复杂度。

第一步和解法二相同,也是统计出数组中元素的频次。接着,将数组中的元素按照出现频次进行分组,即出现频次为 \(i\) 的元素存放在第 \(i\) 个桶。最后,从桶中逆序取出前 \(k\) 个元素。

Java 实现

class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// 统计元素的频次
Map<Integer, Integer> int2FreqMap = new HashMap<>(16);
for (int num : nums) {
int2FreqMap.put(num, int2FreqMap.getOrDefault(num, 0) + 1);
} // 桶排序
List<Integer>[] bucket = new List[nums.length + 1];
for (Integer key : int2FreqMap.keySet()) {
int freq = int2FreqMap.get(key);
if (bucket[freq] == null) {
bucket[freq] = new ArrayList<>();
}
bucket[freq].add(key);
} // 逆序(频次由高到低)取出元素
List<Integer> ret = new ArrayList<>();
for (int i = nums.length; i >= 0 && ret.size() < k; --i) {
if (bucket[i] != null) {
ret.addAll(bucket[i]);
}
} return ret;
}
}

Python 实现

class Solution:
def topKFrequent(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
# 统计元素的频率
freq_dict = dict()
for num in nums:
freq_dict[num] = freq_dict.get(num, 0) + 1 # 桶排序
bucket = [[] for _ in range(len(nums) + 1)]
for key, value in freq_dict.items():
bucket[value].append(key) # 逆序取出前k个元素
ret = list()
for i in range(len(nums), -1, -1):
if bucket[i]:
ret.extend(bucket[i])
if len(ret) >= k:
break
return ret[:k]

复杂度分析

  • 时间复杂度:\(O(n)\),其中 \(n\) 表示数组的长度。
  • 空间复杂度:\(O(n)\)

【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)的更多相关文章

  1. [Swift]LeetCode347. 前K个高频元素 | Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...

  2. [Swift]LeetCode692. 前K个高频单词 | Top K Frequent Words

    Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted b ...

  3. LeetCode:前K个高频元素【347】

    LeetCode:前K个高频元素[347] 题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [ ...

  4. Java实现 LeetCode 347 前 K 个高频元素

    347. 前 K 个高频元素 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输 ...

  5. leetcode 347. 前 K 个高频元素

    问题描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素.   示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums ...

  6. Top K Frequent Elements 前K个高频元素

    Top K Frequent Elements 347. Top K Frequent Elements [LeetCode] Top K Frequent Elements 前K个高频元素

  7. 前 K 个高频元素问题

    前 K 个高频元素问题 作者:Grey 原文地址: 前 K 个高频元素问题 题目描述 LeetCode 347. Top K Frequent Elements 思路 第一步,针对数组元素封装一个数据 ...

  8. 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素

    1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...

  9. leetcode347. 前 K 个高频元素

    题目最终需要返回的是前 kk 个频率最大的元素,可以想到借助堆这种数据结构,对于 kk 频率之后的元素不用再去处理,进一步优化时间复杂度. 具体操作为: 借助 哈希表 来建立数字和其出现次数的映射,遍 ...

随机推荐

  1. CentOS 7配置nginx-1.13.10支持http/2和Server Push

    0.确保openssl版本大于1.0.2 openssl version 1.下载nginx-1.13.10 wget http://nginx.org/download/nginx-1.13.10. ...

  2. Python 学习第三部分函数——第一章函数基础

    函数是python 为了代码最大程度的重用和最小代码冗余而提供的最基本的程序结构.使用它我们可以将复杂的系统分解为可管理的部件. 函数相关语句 def...          创建一个对象并将其赋值给 ...

  3. ASP.NET MVC 主要的四种过滤器和三种具体实现类

    4种常用过滤器(IAuthrorizationFilter.IActionFilter.IResultFilter.IExceptionFilter) 和 3种具体实现类(AuthorizeAttri ...

  4. ASP.NET MVC 项目设置,移除多余的响应头,woff,woff2 字体文件请求处理

    移除 X-AspNetMvc-Version 在 Global.asax 的 Application_Start添加代码 MvcHandler.DisableMvcResponseHeader = t ...

  5. NTLM移除

  6. Android---------------Handler的学习

    public LocalVPNService() { mHandlerThread = new HandlerThread(TAG); mHandlerThread.start(); mBackgro ...

  7. [luogu 5301][bzoj 5503] [GXOI/GZOI2019] 宝牌一大堆

    题面 好像ZJOI也考了一道麻将, 这是要发扬中华民族的赌博传统吗??? 暴搜都不会打, 看到题目就自闭了, 考完出来之后看题解, \(dp\), 可惜自己想不出来... 对于国士无双(脑子中闪过了韩 ...

  8. dubbo实现原理之动态编译

    Dubbo为了实现基于spi思想的扩展特性,特别是能够灵活添加额外功能,对于扩展或则策略选择的设配类能够动态生成.对于一些需求已知的类如Protocal,它们的设配类代码dubbo可以直接的提供,但是 ...

  9. MySQL 排名统计(常用功能函数)

    select actor_id,@curr_cnt:=cnt as cnt , ,@rank) as rank, @prev_cnt:=@curr_cnt as dummy from( select ...

  10. POJ 2590

    #include<iostream> #include<algorithm> #define MAXN 1000000 using namespace std; unsigne ...