题目传送门:LOJ #2146

题意简述:

有 \(n\) 种寿司,第 \(i\) 种寿司的类型为 \(a_i\)。

如果你吃了第 \(i\) 种到第 \(j\) 种寿司,你会得到 \(d_{i,j}\)(\(i\le j\))的收益。

如果你吃了 \(c\)(\(c>0\))种类型为 \(x\) 的寿司,你会付出 \(mx^2+cx\) 的代价(\(m\in\{0,1\}\))。

最大化收益与代价的差。

题解:

一种经典的模型:最大权闭合子图。

模型:有若干个物品,每种物品有一个可正可负的价值 \(v_i\),选取了物品就意味着获得了价值。

物品之间有限制关系:\(x\to y\) 表示若要选择物品 \(x\) 则必须选择物品 \(y\)。

目标是最大化价值和。

显然,有时需要为了一个拥有较大价值的物品而被迫选择负价值的物品。

考虑使用最小割解决此类问题:

将每个物品与源 \(S\) 汇 \(T\) 相连。若割掉与 \(S\) 相连的边表示不选这个物品,割掉与 \(T\) 相连的边表示选择这个物品。

对于一个物品的价值 \(v\),如果 \(v>0\) 则令它与 \(S\) 相连的边的权值为 \(v\),与 \(T\) 相连的边的权值为 \(0\),将 \(v\) 加入答案。表示不选择这个物品会付出 \(v\) 的代价;

如果 \(v<0\) 则令它与 \(S\) 相连的边的权值为 \(0\),与 \(T\) 相连的边的权值为 \(-v\)(显然 \(-v>0\))。表示选择这个物品会付出 \(-v\) 的代价。

对于 \(x\to y\) 的关系,转化为 \(x\) 向 \(y\) 连一条权值为 \(\infty\) 的边,显然这条边永远不会被割,如果选择了 \(x\),即割掉 \(x\) 与 \(T\) 相连的边,那么如果不选 \(y\),即割掉 \(y\) 与 \(S\) 相连的边,就会出现路径 \(S\to x\to y\to T\),所以必须选择 \(y\)。而如果不选 \(x\) 则对 \(y\) 的选择没有影响。

因为权值全部为非负数,符合使用 Dinic 算法解决网络流的条件,结合最大流最小割定理,可以使用 Dinic 算法解决此类问题。

回到题目上来,我们将每种 \(d_{i,j}\) 的收益都看做一个物品。显然如果选择 \(d_{i,j}\)(\(i<j\)),则必须选择 \(d_{i,j-1}\) 以及 \(d_{i+1,j}\)。

而如果吃了 \(c\)(\(c>0\))种类型为 \(x\) 的寿司,需要付出 \(mx^2+cx\) 的代价。

这可以转化为:吃了每种类型为 \(x\) 的寿司需要付出 \(x\) 的代价,而吃过类型为 \(x\) 的寿司需要付出 \(mx^2\) 的代价。

选择了 \(d_{i,i}\) 就代表吃掉了第 \(i\) 种寿司,这时需要付出 \(a_i\) 的代价(\(a_i\) 是这种寿司的类型)。

选择了 \(d_{i,i}\) 还意味着:必须付出 \(m\cdot a_i^2\) 的代价,我们将每个寿司类型也看作一个物品,选择收益 \(d_{i,i}\) 则必须选择类型 \(a_i\)。

至此,所有限制都转化为了“选择 \(x\) 则必须选择 \(y\)”的形式,可以使用最大权闭合子图的模型解决了。

在代码中,\(S\)、\(T\) 分别是 \(1\) 和 \(2\) 号点,\(d_{i,j}\) 是 \(\mathrm{Id}[i][j]\) 号点,接下来的点则是每种寿司类型。

#include <cstdio>
#include <cstring>
#include <algorithm> typedef long long LL;
const LL Inf = 0x7fffffffffffffff; namespace DinicFlow {
const int MN = 6060, MM = 16055; int N, S, T;
int h[MN], iter[MN], nxt[MM * 2], to[MM * 2], tot = 1; LL w[MM * 2];
inline void ins(int u, int v, LL x) { nxt[++tot] = h[u], to[tot] = v, w[tot] = x, h[u] = tot; }
inline void insw(int u, int v, LL x) { ins(u, v, x); ins(v, u, 0); } int lv[MN], que[MN], l, r; inline bool Lvl() {
memset(lv, 0, sizeof(lv));
lv[S] = 1;
que[l = r = 1] = S;
while (l <= r) {
int u = que[l++];
for (int i = h[u]; i; i = nxt[i]) if (w[i] && !lv[to[i]]) {
lv[to[i]] = lv[u] + 1;
que[++r] = to[i];
}
}
return lv[T] != 0;
} LL Flow(int u, LL f) {
if (u == T) return f;
LL d = 0, s = 0;
for (int &i = iter[u]; i; i = nxt[i]) if (w[i] && lv[to[i]] == lv[u] + 1) {
d = Flow(to[i], std::min(f, w[i]));
f -= d, s += d;
w[i] -= d, w[i ^ 1] += d;
if (!f) break;
}
return s;
} inline LL Dinic() {
LL Ans = 0;
while (Lvl()) {
memcpy(iter + 1, h + 1, N * sizeof(h[0]));
Ans += Flow(S, Inf);
}
return Ans;
}
} const int MN = 105; int N, M, A[MN], MxA;
int F[MN][MN], Id[MN][MN], cnt;
LL Ans = 0; int main() {
scanf("%d%d", &N, &M);
for (int i = 1; i <= N; ++i) scanf("%d", &A[i]), MxA = std::max(MxA, A[i]);
DinicFlow::S = 1, DinicFlow::T = 2;
cnt = 2;
for (int i = 1; i <= N; ++i) for (int j = i; j <= N; ++j) {
scanf("%d", &F[i][j]), Id[i][j] = ++cnt;
}
for (int i = 1; i <= N; ++i) for (int j = i; j <= N; ++j) {
int cost = F[i][j];
if (i == j) {
if (M) DinicFlow::insw(Id[i][j], cnt + A[i], Inf);
cost -= A[i];
}
else {
DinicFlow::insw(Id[i][j], Id[i + 1][j], Inf);
DinicFlow::insw(Id[i][j], Id[i][j - 1], Inf);
}
if (cost > 0) DinicFlow::insw(1, Id[i][j], cost), Ans += cost;
if (cost < 0) DinicFlow::insw(Id[i][j], 2, -cost);
}
if (M) for (int i = 1; i <= MxA; ++i) DinicFlow::insw(++cnt, 2, i * i);
DinicFlow::N = cnt;
printf("%lld\n", Ans - DinicFlow::Dinic());
return 0;
}

洛谷 P3749: LOJ 2146: [SHOI2017]寿司餐厅的更多相关文章

  1. [LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅

    [LOJ 2146][BZOJ 4873][Shoi2017]寿司餐厅 题意 比较复杂放LOJ题面好了qaq... Kiana 最近喜欢到一家非常美味的寿司餐厅用餐. 每天晚上,这家餐厅都会按顺序提供 ...

  2. 【最大权闭合子图】bzoj4873 [Shoi2017]寿司餐厅

    4873: [Shoi2017]寿司餐厅 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 369  Solved: 256[Submit][Status ...

  3. BZOJ:4873: [Shoi2017]寿司餐厅

    4873: [Shoi2017]寿司餐厅 首先很开心在膜你赛的时候做了出来. 看到数据范围,看到不能dp,看到贡献去重后计算,咦,流? 那就容易了,转最大权闭合子图,每个区间建一个点,取了就一定要取他 ...

  4. bzoj 4873: [Shoi2017]寿司餐厅 [最小割]

    4873: [Shoi2017]寿司餐厅 题意:略 唯一会做的... 一眼最小割 就是最大权闭合子图呀 \(s\rightarrow d_{positive} \rightarrow -d_{negt ...

  5. BZOJ_4873_[Shoi2017]寿司餐厅_最大权闭合子图

    BZOJ_4873_[Shoi2017]寿司餐厅_最大权闭合子图 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=4873 分析:我们发现分数正负 ...

  6. 【BZOJ4873】[Shoi2017]寿司餐厅 最大权闭合图

    [BZOJ4873][Shoi2017]寿司餐厅 Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di ...

  7. bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)

    4873: [Shoi2017]寿司餐厅 大难题啊啊!!! 题目:传送门 题解:一眼题是网络流,但还是不会OTZ,菜啊... %题解... 最大权闭合子图!!! 好的...开始花式建边: 1.对于每个 ...

  8. [bzoj4873] [洛谷P3749] [Shoi2017] 寿司餐厅

    Description Kiana最近喜欢到一家非常美味的寿司餐厅用餐.每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个 代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号.每种寿 ...

  9. 【洛谷P3749】[六省联考2017]寿司餐厅(网络流)

    洛谷 题意: 给出\(n\)份寿司,现可以选取任意多次连续区间内的寿司,对于区间\([l,r]\),那么贡献为\(\sum_{i=l}^r \sum_{j=i}^rd_{i,j}\)(对于相同的\(d ...

随机推荐

  1. 《Linux内核分析》第四周学习总结 扒开系统调用的三成皮(上)

    第四周 扒开系统调用的三层皮(上) 郝智宇 无转载 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一. ...

  2. LINUX基础实验报告

    实验一:主要是介绍Linux系统概况,无运行代码. 实验二:Linux的基本操作 重要知识点 [Tab] 使用Tab键来进行命令补全,Tab键一般键盘是在字母Q旁边,这个技巧给你带来的最大的好处就是当 ...

  3. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...

  4. php面试问答

    结合实际PHP面试,汇总自己遇到的问题,以及网上其他人遇到的问题,尝试提供简洁准确的答案 包含MySQL.Redis.Web.安全.网络协议.PHP.服务器.业务设计.线上故障.个人简历.自我介绍.离 ...

  5. poi中如何自定义日期格式

    1. poi的“Quick Guide”中提供了 “How to create date cells ”例子来说明如何创建日期单元格,代码如下: HSSFCellStyle cellStyle = w ...

  6. LOJ 530 最小倍数(数论)

    题意 有\(T\)组数据. 给定\(p\),求最小的正整数\(n\),使得\(n!\%p=0\). 由于\(p\)很大,输入将给出\(m\)和\(e_1,e_2...e_m\),表示\(p=\prod ...

  7. 洛谷P3960 列队(NOIP2017)(Splay)

    洛谷题目传送门 最弱的Splay...... 暴力模拟30分(NOIP2017实际得分,因为那时连Splay都不会)...... 发现只是一个点从序列里搬到了另一个位置,其它点的相对位置都没变,可以想 ...

  8. 【题解】 P1879 玉米田Corn Fields (动态规划,状态压缩)

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  9. 洛谷 P1309 瑞士轮 解题报告

    P1309 瑞士轮 题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低 ...

  10. python之旅:网络编程

    一 客户端/服务器架构 1.硬件C/S架构(打印机) 2.软件C/S架构 互联网中处处是C/S架构 如黄色网站是服务端,你的浏览器是客户端(B/S架构也是C/S架构的一种) 腾讯作为服务端为你提供视频 ...