Given a non-negative integer, you could swap two digits at most once to get the maximum valued number. Return the maximum valued number you could get.

Example 1:

Input: 2736
Output: 7236
Explanation: Swap the number 2 and the number 7.

Example 2:

Input: 9973
Output: 9973
Explanation: No swap.

Note:

    1. The given number is in the range [0, 108]

Idea 1. To get a biggest digit for each position, the digit need to swap with the biggest in the number, since it aims to get the maximum valued number, the digit (digits[i]) need to swap with the biggest digit on the right(digits[j] > digits[i], j > i), the digit needs to be the leftmost one which has a bigger digit on the right side. Since needs index to swap, build the maxIndex array. 从右往左建一个maxIndexArray, 再从左到右遍历 找到第一个digits[i] < digits[maxIndex[i]], swap(i, maxIndex[i]).

Note: right most maxIndex, if there are duplicates like 27736, 77236 > 72736

Time complexity: O(n) 2 scan, if string construction is O(n)

Space complexity: O(n)

 class Solution {
public int maximumSwap(int num) {
char[] digits = Integer.toString(num).toCharArray();
int[] maxIndex = new int[digits.length]; maxIndex[digits.length-1] = digits.length-1;
for(int i = digits.length-2; i >=0; --i) {
maxIndex[i] = i;
if(digits[maxIndex[i]] - '0' <= digits[maxIndex[i+1]] - '0') {
maxIndex[i] = maxIndex[i+1];
}
} for(int i = 0; i < digits.length; ++i) {
if(digits[i] - '0' < digits[maxIndex[i]] - '0') {
char c = digits[i];
digits[i] = digits[maxIndex[i]];
digits[maxIndex[i]] = c;
break;
}
} return Integer.parseInt(new String(digits));
}
}

Idea 1.a, to avoid maxIndex array, record the maxIndex on the way, 1 scan from right to left

 class Solution {
private void swap(char[] digits, int leftIndex, int rightIndex) {
char c = digits[leftIndex];
digits[leftIndex] = digits[rightIndex];
digits[rightIndex] = c;
}
public int maximumSwap(int num) {
char[] digits = Integer.toString(num).toCharArray(); int leftIndex = -1, rightIndex = -1;
int maxIndex = digits.length-1;
for(int i = digits.length-1; i >=0; --i) {
if(digits[i] > digits[maxIndex]) {
maxIndex = i;
}
else if(digits[i] < digits[maxIndex]) {
leftIndex = i;
rightIndex = maxIndex;
}
} if(leftIndex == -1) {
return num;
} swap(digits, leftIndex, rightIndex); return Integer.parseInt(new String(digits));
}
}

Idea 1.c. Remove the use of toCharArray, convert to digit on the way from right to left.

Time complexity: O(n)

Space complexity: O(1)

 class Solution {
public int maximumSwap(int num) {
int leftDigit = -1, rightDigit = -1;
int leftBase = 0, rightBase = 0;
int curr = num; int maxDigit = -1;
int maxBase = 0;
int base = 1;
while(curr != 0) {
int digit = curr % 10; if(digit > maxDigit) {
maxDigit = digit;
maxBase = base;
}
else if(digit < maxDigit) {
leftDigit = digit;
leftBase = base;
rightDigit = maxDigit;
rightBase = maxBase;
}
base = base * 10;
curr = curr/10;
} if(leftDigit == -1) {
return num;
} num = num - leftDigit*leftBase - rightDigit*rightBase
+ leftDigit* rightBase + rightDigit * leftBase; return num;
}
}

Idea 2. 官方的妙法,数字只有0-9,建立一个数组记录每个数字出现在最右边的index(从左到右扫), 再从左到右扫,寻找第一个digits[i] < last[d] (d > digits[i] and last[d] > i), swap(digits, i, last[d]).

 class Solution {
private void swap(char[] digits, int i, int j) {
char c = digits[i];
digits[i] = digits[j];
digits[j] = c;
}
public int maximumSwap(int num) {
char[] digits = Integer.toString(num).toCharArray(); int[] last = new int[10];
for(int i = 0; i < digits.length; ++i) {
last[digits[i] - '0'] = i;
} for(int i = 0; i < digits.length; ++i) {
for(int d = 9; d > digits[i] - '0'; --d) {
if(last[d] > i) {
swap(digits, i, last[d]);
return Integer.valueOf(new String(digits));
}
}
} return num;
}
}

Idea 3. 虽然也感觉和LT31 Next Permutation有相似的,没有找出规律,网上看到的妙法,从左到右找到第一个valley, 继续valley后找到最大值作为要交换的rightIndex, 然后再从左到右找一个小于最大值的作为leftIndex, swap(digits, leftIndex, rightIndex); LT31是从右到左找第一个peak, peak的左边是rightIndex, 再从右到左找第一个比digits[rightIndex]小的作为leftIndex, 最后交换就是了.

Note. duplicates, rightMost index like 27736, 77236 > 72736, 又犯了错,下次记住这个test case啊

 class Solution {
private void swap(char[] digits, int i, int j) {
char c = digits[i];
digits[i] = digits[j];
digits[j] = c;
}
public int maximumSwap(int num) {
char[] digits = Integer.toString(num).toCharArray(); int rightIndex = 1;
while(rightIndex < digits.length && digits[rightIndex-1] >= digits[rightIndex]) {
++rightIndex;
} if(rightIndex == digits.length) {
return num;
} for(int i = rightIndex+1; i < digits.length; ++i) {
if(digits[i] >= digits[rightIndex]) {
rightIndex = i;
}
} for(int i = 0; i < digits.length; ++i) {
if(digits[i] < digits[rightIndex]) {
swap(digits, i, rightIndex);
break;
}
} return Integer.parseInt(new String(digits));
}
}

Maximum Swap LT670的更多相关文章

  1. LC 670. Maximum Swap

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  2. [LeetCode] Maximum Swap 最大置换

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  3. [Swift]LeetCode670. 最大交换 | Maximum Swap

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  4. 670. Maximum Swap

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  5. 670. Maximum Swap 允许交换一个数 求最大值

    [抄题]: Given a non-negative integer, you could swap two digits at most once to get the maximum valued ...

  6. LeetCode Maximum Swap

    原题链接在这里:https://leetcode.com/problems/maximum-swap/description/ 题目: Given a non-negative integer, yo ...

  7. [LeetCode] 670. Maximum Swap 最大置换

    Given a non-negative integer, you could swap two digits at most once to get the maximum valued numbe ...

  8. 1095. Maximum Swap —— Weekly Challenge

    题目限定输入是[0, 10^8],因而不用考虑负数或者越界情况,算是减小了难度. public class Solution { /** * @param num: a non-negative in ...

  9. 最大交换 Maximum Swap

    2018-07-28 16:52:20 问题描述: 问题求解: 使用bucket数组来记录每个数最后出现的位置,然后从左向右遍历一遍即可. public int maximumSwap(int num ...

随机推荐

  1. Java中的冒泡排序和选择排序

    //冒泡排序 public class Test5 { public static void main(String[] args) { int[] arr = {12,2,25,89,5}; bub ...

  2. java分解质因数,具体程序分析和代码

    题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5. 将一个正整数分解质因数分析:对n进行分解质因数,找到最小的质数k如果这个质数恰好等于n则说明分解质因数过程已经结束,打印输出 ...

  3. CGLIB代理基础

    本文意在讲解CGLIB的基础使用及基本原理. 一.CGLIB的基本原理: 依赖ASM字节码工具,通过动态生成实现接口或继承类的类字节码,实现动态代理. 针对接口,生成实现接口的类,即implement ...

  4. Dao层向sql语句传递多个参数

    手动封装: serviceImpl层 Map<String, Object> params = new HashMap<String, Object>(2);params.pu ...

  5. BOM 对象--location、navigator、screen、history

    1.location 对象 location提供了与当前窗口中加载的文档有关的信息,还有一些导航功能.需要注意的是,window.location 和 document.location 引用的是同一 ...

  6. spring boot 中统一异常处理

    基于 spring boot 对异常处理的不友好,现在通过其他的方式来统一处理异常 步骤一:自定义异常类 public class UserNotExistException extends Runt ...

  7. linux 升级python2.7

    linux为centos6,系统默认安装了python2.6,需要执行的python脚本内容包含标准库之xml.etree.ElementTree  用到库里的一个iter方法是python2.7的新 ...

  8. WAS 忘记密码

    一.重置密码 1.首先关闭was,ps –ef|grep java 查看java进程号,然后kill -9 XXXX杀掉进程即可.或者使用命令./stopServer.sh server1 2.取消控 ...

  9. NumPy 字节交换

    NumPy 字节交换 在几乎所有的机器上,多字节对象都被存储为连续的字节序列.字节顺序,是跨越多字节的程序对象的存储规则. 大端模式:指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地 ...

  10. Codeforces Beta Round #49 (Div. 2)

    Codeforces Beta Round #49 (Div. 2) http://codeforces.com/contest/53 A #include<bits/stdc++.h> ...