Description

在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。
在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,
两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人
之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路
径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过
统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有
多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s
到t的最短路的数目;则定义
为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图
,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每
一个结点的重要程度。

Input

输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号
。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有
一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500 
,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间
的最短路径数目不超过 10^10
 

Output

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

Sample Input

4 4
1 2 1
2 3 1
3 4 1
4 1 1

Sample Output

1.000
1.000
1.000
1.000

HINT

社交网络如下图所示。

对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结
点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他
三个结点的重要程度也都是 1 。
/*
首先考虑任意两个点之间的最短距离,这个距离是不断被更新的,如果两点有边,那么最开始dij = aij,最短路条数为1,用k松弛dij,如果松弛的结果是让他的距离减小,那么根据乘法原理,cij = cik * ckj,同时更新距离;如果松弛结果两者距离不变,那么只更新最短路条数。
再考虑计算每一个点的重要程度,这个根据公式朴素计算即可,注意保留三位小数的问题。
*/
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int inf = ;
int n,m,a[][];
double cnts[][],ans[];
int main(){
cin>>n>>m;
int u,v,w;
for(int i = ;i <= n;i++){
for(int j = ;j <= n;j++){
a[i][j] = inf;
}
}
for(int i = ;i <= m;i++){
scanf("%d%d%d",&u,&v,&w);
a[u][v] = a[v][u] = w;
cnts[u][v] = cnts[v][u] = ;
}
for(int k = ;k <= n;k++){
for(int i = ;i <= n;i++){
for(int j = ;j <= n;j++){
if(k != i && k != j && i != j){
if(a[i][j] > a[i][k] + a[k][j]){
a[i][j] = a[i][k] + a[k][j];
cnts[i][j] = cnts[i][k] * cnts[k][j];
}else if(a[i][j] == a[i][k] + a[k][j]){
cnts[i][j] += cnts[i][k] * cnts[k][j];
}
}
}
}
}
for(int k = ;k <= n;k++){
for(int i = ;i <= n;i++){
for(int j = ;j <= n;j++){
if(k != i&&k != j&&i != j&&cnts[i][j]){
if(a[i][j] == a[i][k] + a[k][j]){
ans[k] += cnts[i][k] / cnts[i][j] * cnts[k][j];
}
}
}
}
}
for(int i = ;i <= n;i++) printf("%.3lf\n",ans[i]);
return ;
}

bzoj1491 社交网络的更多相关文章

  1. BZOJ-1491 社交网络 FLoyd+乱搞

    感觉这两天一直在做乱搞的题... 1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1279 Solved: 732 ...

  2. 【BZOJ1491】【NOI2007】社交网络(最短路,动态规划)

    [BZOJ1491][NOI2007]社交网络(最短路,动态规划) 题面 BZOJ 洛谷 图片是假的,只能到OJ上看 Description 在社交网络(socialnetwork)的研究中,我们常常 ...

  3. 【BZOJ1491】[NOI2007]社交网络 Floyd

    [BZOJ1491][NOI2007]社交网络 Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子 ...

  4. BZOJ1491:1491: [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2204  Solved: 1175[Submit][Status ...

  5. BZOJ1491 洛谷2047 NOI2007 社交网络

    Description: 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们 ...

  6. [BZOJ1491][NOI2007]社交网络 floyd

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2196  Solved: 1170[Submit][Status ...

  7. BZOJ1491: [NOI2007]社交网络(Floyd 最短路计数)

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2343  Solved: 1266[Submit][Status][Discuss] Descripti ...

  8. BZOJ1491 [NOI2007]社交网络 【floyd】

    题目 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这个关系网络对应到一 ...

  9. BZOJ1491: [NOI2007]社交网络

    传送门 最短路计数问题.因为数据量非常小($N \leq 100$),所以Floyd随便搞搞就行了. $f[i][j]$表示路径长度,$g[i][j]$表示最短路方案数. 先跑一遍裸的Floyd,然后 ...

随机推荐

  1. [Django]网页中利用ajax实现批量导入数据功能

    url.py代码: url(r'^workimport/$', 'keywork.views.import_keywork', name='import_keywork') view.py代码: fr ...

  2. BI cube的前世今生:商业智能BI为什么需要cube技术

    企业中常常会出现这样一幕幕尴尬的场景: 企业的决策人员需要从不同的角度来审视业务,协助他们分析业务,例如分析销售数据,可能会综合时间周期.产品类别.地理分布.客户群类等多种因素来考量.IT人员在每一个 ...

  3. 传输层协议TCP和UDP

    本文力图简洁,让读者对TCP和UDP有个初步的认知.闲话少说,现在开始吧.TCP和UDP都是传输层的协议.TCP通过三次握手建立可靠连接,对未送达的消息重新进行发送.UDP不建立连接而直接发送,对未送 ...

  4. Leetcode: word search

    July 6, 2015 Problem statement: Word Search Given a 2D board and a word, find if the word exists in ...

  5. LoadRunner录制Web协议的脚本 (by网络)

    LoadRunner录制Web协议的脚本  http://itindex.net/detail/50530-loadrunner-web-脚本

  6. NYOJ 734

    奇数阶魔方 描述 一个 n 阶方阵的元素是1,2,...,n^2,它的每行,每列和2条对角线上元素的和相等,这样的方阵叫魔方.n为奇数时我们有1种构造方法,叫做“右上方” ,例如下面给出n=3,5,7 ...

  7. 4.bootstrap练习笔记-内容区块

    bootstrap练习笔记-内容区块 1.bootstrap中,采用的全部是div布局,把你的内容首先要包含在一个大的DIV区块当中 2.然后再写一个div.container,这个div里面存放真正 ...

  8. PAT 1032. 挖掘机技术哪家强(20)

    为了用事实说明挖掘机技术到底哪家强,PAT组织了一场挖掘机技能大赛.现请你根据比赛结果统计出技术最强的那个学校. 输入格式: 输入在第1行给出不超过105的正整数N,即参赛人数.随后N行,每行给出一位 ...

  9. js和jquery如何获取图片真实的宽度和高度

    按照插入的图片的尺寸来判断图片是横图还是竖图.然后判断过后给予不同的展示方式,下面为大家介绍下js和jquery如何获取图片真实的宽度和高度   1.什么时候需要获取图片真实的宽度和高度 在做pc网页 ...

  10. DbUtility v3 背后的故事

    DbUtility v3 背后的故事 时间 DbUtility v3构思了差不多大半年,真正开发到第一个版本发布到NuGet却只花了50天.中途大量时间在完善 Jumony 3,只有三周来开发DbUt ...