Equations

Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 82 Accepted Submission(s): 54
 
Problem Description
Consider equations having the following form:

a*x1^2+b*x2^2+c*x3^2+d*x4^2=0
a, b, c, d are integers from the interval [-50,50] and any of them cannot be 0.

It is consider a solution a system ( x1,x2,x3,x4 ) that verifies the equation, xi is an integer from [-100,100] and xi != 0, any i ∈{1,2,3,4}.

Determine how many solutions satisfy the given equation.

 
Input
The input consists of several test cases. Each test case consists of a single line containing the 4 coefficients a, b, c, d, separated by one or more blanks.
End of file.
 
Output
For each test case, output a single line containing the number of the solutions.
 
Sample Input
1 2 3 -4
1 1 1 1
 
Sample Output
39088
0
 
Author
LL
 
Source
“2006校园文化活动月”之“校庆杯”大学生程序设计竞赛暨杭州电子科技大学第四届大学生程序设计竞赛
 
Recommend
LL
 
/*
题意:给你a,b,c,d然后让你输出满足条件的 x1,x2,x3,x4 的组数 初步思路:打表乱搞一下 #放弃了:打了半小时了,还没有打完。想一下可以将整个式子分成两半,求两半加起来是零的个数
*/
#include<bits/stdc++.h>
using namespace std;
int a,b,c,d;
int f1[];//正的结果
int f2[];//负的结果
int main(){
// freopen("in.txt","r",stdin);
while(scanf("%d%d%d%d",&a,&b,&c,&d)!=EOF){
if((a>&&b>&&c>&&d>)||(a<&&b<&&c<&&d<)){
printf("0\n");
continue;
}
memset(f1,,sizeof f1);
memset(f2,,sizeof f2);
long long s=;
for(int i=-;i<=;i++){
if(i==) continue;
for(int j=-;j<=;j++){
if(j==) continue;
int k=a*i*i+b*j*j;
if(k>=) f1[k]++;
else f2[-k]++;
}
}
for(int i=-;i<=;i++){
if(i==) continue;
for(int j=-;j<=;j++){
if(j==) continue;
int k=c*i*i+d*j*j;
if(k>) s+=f2[k];
else s+=f1[-k];
}
}
printf("%lld\n",s);
}
return ;
}

Equations的更多相关文章

  1. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  2. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  4. Represent code in math equations

    Introduce The article shows a way to use math equations to represent code's logical. Key ideas logic ...

  5. EM basics- the Maxwell Equations

    All the two important problems that the EM theory trys to describe and explain are propogation and r ...

  6. FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

    FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...

  7. ACM题目————Equations

    Description Consider equations having the following form: a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 a, b, c, d a ...

  8. zoj 1204 Additive equations

    ACCEPT acm作业 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=204 因为老师是在集合那里要我们做这道题.所以我很是天 ...

  9. Existence and nonexistence results for anisotropic quasilinear elliptic equations

    Fragalà, Ilaria; Gazzola, Filippo; Kawohl, Bernd. Existence and nonexistence results for anisotropic ...

  10. hdu 1496 Equations

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1496 Equations Description Consider equations having ...

随机推荐

  1. String类的一些转换功能(6)

    1:把字符串转换成字节数组 getBytes() 如: String s = "你好啊!" //编码 byte [] arr = s.getBytes();//这里默认编码格式是g ...

  2. spring 面向切面(AOP)

    AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术. AOP与OOP是面向不同领域的两种设计思想. ...

  3. latex使用笔记

    1.图片自动浮动到最后一页单独占用一页 将表格中的 \begin{table}[h]\end{table} 改成 \begin{table}[H]\end{table} 即可 2.公式内容中字母之间空 ...

  4. Long Long Message (poj2774 后缀数组求最长公共子串)

    Long Long Message Time Limit: 4000MS   Memory Limit: 131072K Total Submissions: 19206   Accepted: 79 ...

  5. Python打印乘法口诀表

    思路:第一行:1*1,第二行:1*2.,2*2,第三行:1*3,2*3,3*3-- 最后一行:1*9,2*9,3*9,-9*9,以此类推,可以设2个数:i,j:让 i 从1循环到9,让 j 从1到小于 ...

  6. PyCharm基本操作

    1.1 PyCharm基本使用 视频学习连接地址:http://edu.51cto.com/course/9043.html 1.1.1 在Pycharm下为你的Python项目配置Python解释器 ...

  7. C#设计模式之六原型模式(Prototype)【创建型】

    一.引言 在开始今天的文章之前先说明一点,欢迎大家来指正.很多人说原型设计模式会节省机器内存,他们说是拷贝出来的对象,这些对象其实都是原型的复制,不会使用内存.我认为这是不对的,因为拷贝出来的每一个对 ...

  8. 和团队齐头并进——敏捷软件开发的Scrum的学习

    敏捷开发的介绍 概念 更强调程序员团队与业务专家之间的紧密协作.面对面的沟通(认为比书面的文档更有效).频繁交付新的软件版本.紧凑而自我组织型的团队.能够很好地适应需求变化的代码编写和团队组织方法,也 ...

  9. Hadoop通过HCatalog编写Mapreduce任务访问hive库中schema数据

    1.dirver package com.kangaroo.hadoop.drive; import java.util.Map; import java.util.Properties; impor ...

  10. JAVA提高五:注解Annotation

    今天我们学习JDK5.0中一个非常重要的特性,叫做注解.是现在非常流行的一种方式,可以说因为配置XML 比较麻烦或者比容易查找出错误,现在越来越多的框架开始支持注解方式,比如注明的Spring 框架, ...