python特征提取——pyAudioAnalysis工具包
作者:桂。
时间:2017-05-04 18:31:09
链接:http://www.cnblogs.com/xingshansi/p/6806637.html
前言
语音识别等应用离不开音频特征的提取,最近在看音频特征提取的内容,用到一个python下的工具包——pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis,该工具包的说明文档可以点击这里下载,对应的github链接点击这里。
这个工具包原说明文档支持的是Linux安装,且不能与python3很好地兼容,注意啦
一、常用工具包简介
目前针对音频信号,C/C++ 、Python、MATLAB等常用的工具包有:
二、pyAudioAnalysis工具包简介
pyAudioAnalysis是一个音频处理工具包,主要功能如图:
其中Feature Extraction包括(顺序有先后):
补充说明一下:
- 1-Zero Crossing Rate:短时平均过零率,即每帧信号内,信号过零点的次数,体现的是频率特性
- 2-Energy:短时能量,即每帧信号的平方和,体现的是信号能量的强弱
- 3-Entropy of Energy:能量熵,跟频谱的谱熵(Spectral Entropy)有点类似,不过它描述的是信号的时域分布情况,体现的是连续性
- 4-Spectral Centroid:频谱中心又称为频谱一阶距,频谱中心的值越小,表明越多的频谱能量集中在低频范围内,如:voice与music相比,通常spectral centroid较低
- 5-Spectral Spread:频谱延展度,又称为频谱二阶中心矩,它描述了信号在频谱中心周围的分布状况
- 6-Spectral Entropy:谱熵,根据熵的特性可以知道,分布越均匀,熵越大,能量熵反应了每一帧信号的均匀程度,如说话人频谱由于共振峰存在显得不均匀,而白噪声的频谱就更加均匀,借此进行VAD便是应用之一
- 7-Spectral Flux:频谱通量,描述的是相邻帧频谱的变化情况
function [vsf] = FeatureSpectralFlux (X, f_s) % difference spectrum (set first diff to zero)
afDeltaX = diff([X(:,1), X],1,2); % flux
vsf = sqrt(sum(afDeltaX.^2))/size(X,1);
end - 8-Spectral Rolloff:频谱滚降点,给出定义:
- 9~21-MFCCs:就是大名鼎鼎的梅尔倒谱系数,这个网上资料非常多,也是非常重要的音频特征。
- 22~33-Chroma Vector:这个有12个参数,对应就是12级音阶,还是看原文解释:A 12-element representation of the spectral energy where the bins represent the 12 equal-tempered pitch classes of western-type music (semitone spacing).
- 34-Chroma Deviation:这个就是Chroma Vector的标准方差。
这个在音乐声里可能用的比较多,目前没有接触这类特征:
什么是Chroma特征呢?给出一个示意图
code示例:
from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import audioFeatureExtraction
import matplotlib.pyplot as plt
[Fs, x] = audioBasicIO.readAudioFile("sample.wav");
F = audioFeatureExtraction.stFeatureExtraction(x, Fs, 0.050*Fs, 0.025*Fs);
plt.subplot(2,1,1); plt.plot(F[0,:]); plt.xlabel('Frame no'); plt.ylabel('ZCR');
plt.subplot(2,1,2); plt.plot(F[1,:]); plt.xlabel('Frame no'); plt.ylabel('Energy'); plt.show()
如果希望了解更多的音频特征,这里给出一个链接,点击这里,包含的特征有:
对应都有graph、sound可以点击,sound是对应的音频,graph对应的是特征的效果图,比如打开zeroCross:
三、pyAudioAnalysis工具包安装
pyAudioAnalysis对应链接点击这里。安装这个工具包需要依赖:
A-hmmlearn安装
hmmlearn的链接点击这里。安装hmmlearn有几个前提:
下载之后,我把hmmlearn-master放在python-3.5.2-0\Lib\目录,cmd窗口下cd进去,输入:
pip install -U --user hmmlearn
即可安装成功:
B-Simplejson工具包安装:
Simplejson是Python的JSON编码和解码器,它具有简单、快速、完整、正确和易于扩展的特点,对应的链接点击这里。Simplejson工具包直接conda安装即可:
C-eyed3安装:
eyed3:A tool for working with audio files, specifically MP3 files containing ID3 metadata. 它提供了读写 ID3 标签(v1.x 和 v2.3/v2.4)的功能。同时可检测 MP3 文件的头信息,包括比特率、采样频率和播放时间等。eyed3直接conda install没有成功,对应的链接点击这里。选择了这个版本:
放在了python库的Lib文件夹下:C:\Users\Nobleding\Anaconda3\pkgs\python-3.5.2-0\Lib,cd到对应目录下,pip install 文件名.whl,即可完成安装
D-pydub安装:
pydub是音频处理常用的工具包,例如:
打开一个wav格式文件:
from pydub import AudioSegment
song = AudioSegment.from_wav("never_gonna_give_you_up.wav")
打开一个mp3格式文件:
song = AudioSegment.from_mp3("never_gonna_give_you_up.mp3")
或者其他音频、视频格式:
ogg_version = AudioSegment.from_ogg("never_gonna_give_you_up.ogg")
flv_version = AudioSegment.from_flv("never_gonna_give_you_up.flv") mp4_version = AudioSegment.from_file("never_gonna_give_you_up.mp4", "mp4")
wma_version = AudioSegment.from_file("never_gonna_give_you_up.wma", "wma")
aac_version = AudioSegment.from_file("never_gonna_give_you_up.aiff", "aac")
更多细节信息可以访问其主页。我在github上下载对应的工具包,里边有对应的安装说明。
如果处理wav文件,没有其他要求,如果音频是其他格式它要求电脑安装 ffmpeg orlibav.如果没有安装,运行会有提示:
ffmpeg下载,选择版本
解压并添加环境变量,并利用ffplay测试一下打开一个mp4文件:
ffmpeg安装成功。这个时候import pydub,不再有warning信息
E-pyAudioAnalysis安装
Github给出的是linux下的安装思路,这里下载之后将pyAudioAnalysis放在了\Anaconda3\Lib\site-packages文件夹下,输入指令:
成功调用,原数据是支持Python2的,很多细节要修改,给出一个简单读取wav的测试:
from pyAudioAnalysis import audioBasicIO
import numpy as np
import matplotlib.pyplot as plt
[Fs, x] = audioBasicIO.readAudioFile("count2.wav");
time = np.arange(0,len(x))*1.0/Fs
plt.plot(time,x)
效果图:
python特征提取——pyAudioAnalysis工具包的更多相关文章
- 音频特征提取——pyAudioAnalysis工具包
作者:桂. 时间:2017-05-04 18:31:09 链接:http://www.cnblogs.com/xingshansi/p/6806637.html 前言 语音识别等应用离不开音频特征的 ...
- 音频特征提取——librosa工具包使用
作者:桂. 时间:2017-05-06 11:20:47 链接:http://www.cnblogs.com/xingshansi/p/6816308.html 前言 本文主要记录librosa工具 ...
- python调用word2vec工具包安装和使用指南
python调用word2vec工具包安装和使用指南 word2vec python-toolkit installation and use tutorial 本文选译自英文版,代码注释均摘自本文, ...
- python数据挖掘领域工具包
原文:http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块:Numpy和Sc ...
- python渗透测试工具包
网络 Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包.可用作交互式包处理程序或单独作为一个库.pypcap, Pcapy, pylibpcap: 几个不同 libpcap 捆绑的py ...
- Python之数据分析工具包介绍以及安装【入门必学】
前言本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 首先我们来看 Mac版 按照需求大家依次安装,如果你还没学到数据分析,建议你 ...
- Werkzeug——python web开发工具包
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826062.html 一:Werkzeug是个啥 1)Werkzeug是一个工具包,它封装了很多东西,诸如 ...
- Python之关于工具包简介
1.Pandas Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的 ...
- python+anaconda+pycharm工具包安装
更新额外包 $ conda update conda 更新pip python -m pip install --upgrade pip 更新所有 conda update --all 安装ffmpe ...
随机推荐
- Java异常处理总结
题记:本文为工作十年回顾总结系列之Java语言之异常处理篇,主要内容为<Thinking in Java >第四版和<Effective Java>第二版的阅读笔记,网上流传的 ...
- virtualenv 安装不同版本的虚拟环境的办法
废话不多说直接上代码 virtualenv -p C:\Python27\python2.exe env 上面的*.exe是你要使用的python版本的exe文件的绝对路径. 官方文档参考:http: ...
- Web服务器磁盘满故障深入解析
问题:硬盘显示被写满,但是用du -sh /*查看时占用硬盘空间之和还远小于硬盘大小即找不到硬盘分区是怎么被写满的. 今天下午接到一学生紧急求助,说生产线服务器硬盘满了.该删的日志都删掉了.可空间还是 ...
- SearchBar简单展示
import UIKit class SearchViewController: UIViewController,UISearchBarDelegate { let SCREEN_WIDTH = U ...
- Unix环境编程基础下
Unix出错处理 当UNIX系统的函数出错时,通常会返回一个负值.我们判断函数的返回值小于0表示出错了,注意我们并不知道为什么出错.例如我们open一个文件,返回值-1表示打开失败,但是为什么打开失败 ...
- Python之路-Linux命令基础(5)
作业一:nginx服务 二进制安装nginx包 1.使用网络yum源 2.使用yum安装epel-release扩展源 [root@localhost html]# yum install epel- ...
- robotium问答
robotium问答 robotium集成instrumentation robotium如何定位控件? search类获取当前所有的view,然后根据类型或者文本去筛选,找到view后获取坐标, ...
- Java解决TopK问题(使用集合和直接实现)
在处理大量数据的时候,有时候往往需要找出Top前几的数据,这时候如果直接对数据进行排序,在处理海量数据的时候往往就是不可行的了,而且在排序最好的时间复杂度为nlogn,当n远大于需要获取到的数据的时候 ...
- 500. Keyboard Row
Given a List of words, return the words that can be typed using letters of alphabet on only one row' ...
- Apache设置404页面
使用版本:Apache 2.2 1.添加404页面 在所配置网站的根目录添加编辑好的 404.html (页面名字无所谓 比如也可以叫missing.html) 如C:\Program Files\A ...