前言

上一篇文章《Canvas 仿百度贴吧客户端 loading 小球》实现了百度贴吧客户端的 loading 小球效果,同时还留下了一个任务:实现灵动的红鲤鱼动画。

这个动画效果实现起来比较难,需要良好的数学基础。而中学时学到的三角函数知识,早就还给数学老师了。现在一边练习一边写这篇文章,并不能保证最后能实现这个动画效果。

实现过程

第零步:绘制重心

画出鲤鱼的重心。为了方便看效果,以重心为原点,绘制了两条简单的坐标轴。

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
    <style>
        canvas {
            width: 500px;
            height: 500px;
            border: 1px solid #ccc;
        }
    </style>
</head>
<body>
<canvas id="canvas" width="500" height="500"></canvas>

<script>
    var canvas = document.getElementById('canvas')
    canvas.width = 500
    canvas.height = 500
    var ctx = canvas.getContext('2d')
    var width = canvas.width
    var height = canvas.height

    // 重心 middle point
    var mPt = {
        x: 250,
        y: 250
    }
    var R = 30 // 鱼头半径
    var angle = 0 // 鱼的角度

    // x 坐标
    ctx.fillStyle='#000'
    ctx.beginPath()
    ctx.moveTo(0, mPt.y)
    ctx.lineTo(width, mPt.y)
    ctx.stroke()

    // y 坐标
    ctx.beginPath()
    ctx.moveTo(mPt.x, 0)
    ctx.lineTo(mPt.x, height)
    ctx.closePath()
    ctx.stroke()

    function drawPt(pt) {
        ctx.fillStyle = '#000'
        ctx.beginPath()
        ctx.arc(pt.x, pt.y, 4, 0, 2 * Math.PI)
        ctx.fill()
    }

    // 重心
    drawPt(mPt)
</script>
</body>
</html>

第一步:绘制鱼头

首先需要求出鱼头的坐标。

先定义一个函数,能根据一个点的坐标,相对这个点的角度和距离,求出另一个点的坐标。

function getPt(pt, angle, length) {
    return {
        x: pt.x + length * Math.cos(angle * Math.PI / 180),
        y: pt.y - length * Math.sin(angle * Math.PI / 180)
    }
}

由于鱼头位于鱼前进方向,距离重心 1.5R 的位置,先求出鱼头的位置:

var headPt = getPt(mPt, angle, 1.5 * R) // 鱼头位置
drawPt(headPt)

然后以鱼头位置为圆心,半径为 R 的绘制圆形:

// 绘制鱼头
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.arc(headPt.x, headPt.y, R, 0, 2 * Math.PI)
ctx.fill()

效果如下:

第二步:绘制鱼身

鱼身不是一个规则的图形,它是由两条直线和两条曲线组成的闭合路径。曲线可以用贝塞尔曲线绘制。

我们先绘制鱼左边的身体,首先需要求出左侧贝塞尔曲线的三个控制点:

从图可以看出,当鱼的角度为 0° 时,控制点 bodyLeft1 位于重心右方向 1.5R、上方向 R 的位置。

我写了一个函数,能根据 0° 时点的坐标求出任意度时点的坐标,源码如下。实现原理是,先求出该点距离重心的距离(鱼旋转时,该点距离重心的距离不变)和角度,再根据鱼的方向求出正确的位置。

function quickPt(pt) {
    var length = Math.sqrt((pt.x - mPt.x) * (pt.x - mPt.x) + (pt.y - mPt.y) * (pt.y - mPt.y))
    var angl = getAngle(mPt, pt)
    return getPt(mPt, angle + angl, length)
}

function getAngle(cPt, pt) {
    var angl = Math.atan((cPt.y - pt.y) / (pt.x - cPt.x)) * 180 / Math.PI
    if (pt.y < cPt.y) {
        if (pt.x < cPt.x) {
            console.log('第二')
            angl = 90 + 90 + angl
        }
        if (pt.x > cPt.x) {
            console.log('第一')
        }
    } else if (pt.y > cPt.y) {
        if (pt.x < cPt.x) {
            console.log('第三')
            angl = 90 + 90 + angl
        }
        if (pt.x > cPt.x) {
            console.log('第四')
            angl = 360 + angl
        }
        if (pt.x === cPt.x) {
            angl = 270
        }
    } else {
        if (pt.x < cPt.x) {
            angl = 180
        }
    }
    return angl
}

这样的话,三个控制点的位置我们就可以轻易地求出来:

// 身体
var bodyLeft1 = quickPt({x: mPt.x + 1.5 * R, y: mPt.y - R})
drawPt(bodyLeft1)
var bodyLeft2 = quickPt({x: mPt.x, y: mPt.y - 1.5 * R})
drawPt(bodyLeft2)
var bodyLeft3 = quickPt({x: mPt.x - 1.5 * R, y: mPt.y - 0.8 * R})
drawPt(bodyLeft3)

效果如下:

根据三个控制点绘制贝塞尔曲线:

ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(bodyLeft1.x, bodyLeft1.y)
ctx.quadraticCurveTo(bodyLeft2.x, bodyLeft2.y, bodyLeft3.x, bodyLeft3.y)
ctx.fill()

效果如下:

鱼右边的三个控制点和左边的三个控制点是对称的,再像前面那样求出坐标则显得啰嗦。所以,定义一个函数,能根据某一点的坐标,求出对称点的坐标,两点关于鱼身的中轴线对称。

// 获取对称坐标
function getSymmetricPt(pt) {
    var length = Math.sqrt((pt.x - mPt.x) * (pt.x - mPt.x) + (pt.y - mPt.y) * (pt.y - mPt.y))
    var angl = getAngle(mPt, pt)
    return getPt(mPt, angle * 2 - angl, length)
}

原理是两点关于鱼的中轴线对称的话,这两点到重心的距离相等,并且两点与重心的连线与中轴线夹角相等。

因为 (angle1 + angle2) / 2 = angle,所以 angle2 = angle * 2 - angle1

有了这个函数,我们可以轻易求出鱼身体右侧三个控制点的坐标:

var bodyRight3 = getSymmetricPt(bodyLeft3)
drawPt(bodyRight3)
var bodyRight2 = getSymmetricPt(bodyLeft2)
drawPt(bodyRight2)
var bodyRight1 = getSymmetricPt(bodyLeft1)
drawPt(bodyRight1)

再通过三个控制点绘制贝塞尔曲线,最后用直线链接两个贝塞尔曲线,填充路径。

身体部分完整代码如下:

// 身体
var bodyLeft1 = quickPt({x: mPt.x + 1.5 * R, y: mPt.y - R})
drawPt(bodyLeft1)
var bodyLeft2 = quickPt({x: mPt.x, y: mPt.y - 1.5 * R})
drawPt(bodyLeft2)
var bodyLeft3 = quickPt({x: mPt.x - 1.5 * R, y: mPt.y - 0.8 * R})
drawPt(bodyLeft3)
var bodyRight3 = getSymmetricPt(bodyLeft3)
drawPt(bodyRight3)
var bodyRight2 = getSymmetricPt(bodyLeft2)
drawPt(bodyRight2)
var bodyRight1 = getSymmetricPt(bodyLeft1)
drawPt(bodyRight1)

ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(bodyLeft1.x, bodyLeft1.y)
ctx.quadraticCurveTo(bodyLeft2.x, bodyLeft2.y, bodyLeft3.x, bodyLeft3.y)
ctx.lineTo(bodyRight3.x, bodyRight3.y)
ctx.quadraticCurveTo(bodyRight2.x, bodyRight2.y, bodyRight1.x, bodyRight1.y)
ctx.closePath()
ctx.fill()

效果如下:

第三步:绘制鱼鳍

// 右鳍
var rightPt1 = getPt(headPt, angle - 110, 0.9 * R)
var rightPt2 = getPt(mPt, angle - 70, 4 * R)
var rightPt3 = getPt(mPt, angle - 90, 0.9 * R)
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(rightPt1.x, rightPt1.y)
ctx.quadraticCurveTo(rightPt2.x, rightPt2.y, rightPt3.x, rightPt3.y)
ctx.fill()

// 左鳍
var leftPt1 = getSymmetricPt(rightPt1)
var leftPt2 = getSymmetricPt(rightPt2)
var leftPt3 = getSymmetricPt(rightPt3)
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(leftPt1.x, leftPt1.y)
ctx.quadraticCurveTo(leftPt2.x, leftPt2.y, leftPt3.x, leftPt3.y)
ctx.fill()

效果:

第四步:绘制鱼尾

尾部的绘制是一个繁琐而又无味的过程。从上图可以看出,仅仅绘制尾部的前半部分,我们就需要求出 6 个点的坐标。尾部是可以摆动的,所以尾部并不是关于中轴线对称,而是与中轴线有一个偏角,我们定义这个偏角为 tailOffset。上图中,尾部的第一个圆半径为 TAIL_SIZE,即 0.8R;第二个圆半径为 TAIL_SIZE2,即 0.5R。

var TAIL_SIZE = 0.8
var TAIL_SIZE2 = 0.5
var tailOffset = 20

// 尾部
var tailPt = getPt(mPt, 180 + angle, 1.5 * R)
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.arc(tailPt.x, tailPt.y, TAIL_SIZE * R, 0, 2 * Math.PI)
ctx.fill()
drawPt(tailPt)

var tailPtLeft = getPt(tailPt, 180 + tailOffset - 90, TAIL_SIZE * R)
drawPt(tailPtLeft)
var tailPtRight = getPt(tailPt, 180 + tailOffset + 90, TAIL_SIZE * R)
drawPt(tailPtRight)

var tailPt2 = getPt(tailPt, 180 + angle + tailOffset, (TAIL_SIZE2 + TAIL_SIZE) * R)
drawPt(tailPt2)
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.arc(tailPt2.x, tailPt2.y, TAIL_SIZE2 * R, 0, 2 * Math.PI)
ctx.fill()

var tainPt2Left = getPt(tailPt2, 180 + tailOffset - 90, TAIL_SIZE2 * R)
drawPt(tainPt2Left)
var tailPt2Right = getPt(tailPt2, 180 + tailOffset + 90, TAIL_SIZE2 * R)
drawPt(tailPt2Right)

ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(tailPtLeft.x, tailPtLeft.y)
ctx.lineTo(tainPt2Left.x, tainPt2Left.y)
ctx.lineTo(tailPt2Right.x, tailPt2Right.y)
ctx.lineTo(tailPtRight.x, tailPtRight.y)
ctx.fill()

效果:

继续绘制鱼尾的后半部分,上图:

继续无聊的求点连线。。。

var TAIL_SIZE3 = 0.2

var tailPt3 = getPt(tailPt2, 180 + angle + tailOffset + tailOffset2, 1.3 * R)
drawPt(tailPt3)
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.arc(tailPt3.x, tailPt3.y, TAIL_SIZE3 * R, 0, 2 * Math.PI)
ctx.fill()

var tainPt2Left2 = getPt(tailPt2, 180 + tailOffset + tailOffset2 - 90, TAIL_SIZE2 * R)
drawPt(tainPt2Left2)
var tailPt2Right2 = getPt(tailPt2, 180 + tailOffset + tailOffset2 + 90, TAIL_SIZE2 * R)
drawPt(tailPt2Right2)

var tainPt3Left = getPt(tailPt3, 180 + tailOffset + tailOffset2 - 90, TAIL_SIZE3 * R)
drawPt(tainPt3Left)
var tailPt3Right = getPt(tailPt3, 180 + tailOffset + tailOffset2 + 90, TAIL_SIZE3 * R)
drawPt(tailPt3Right)

ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(tainPt2Left2.x, tainPt2Left2.y)
ctx.lineTo(tainPt3Left.x, tainPt3Left.y)
ctx.lineTo(tailPt3Right.x, tailPt3Right.y)
ctx.lineTo(tailPt2Right2.x, tailPt2Right2.y)
ctx.fill()

绘制第一个三角形

var triangleCenter = getPt(tailPt2, 180 + angle + tailOffset + tailOffset2, 0.8 * R)
drawPt(triangleCenter)
var triangleLeft = getPt(triangleCenter, 180 + tailOffset + tailOffset2 - 90, 0.6 * R)
drawPt(triangleLeft)
var triangleRight = getPt(triangleCenter, 180 + tailOffset + tailOffset2 + 90, 0.6 * R)
drawPt(triangleRight)
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(tailPt2.x, tailPt2.y)
ctx.lineTo(triangleLeft.x, triangleLeft.y)
ctx.lineTo(triangleRight.x, triangleRight.y)
ctx.fill()

效果:

绘制第二个三角形:

var triangle2Center = getPt(tailPt2, 180 + angle + tailOffset + tailOffset2, 1 * R)
drawPt(triangle2Center)
var triangle2Left = getPt(triangle2Center, 180 + tailOffset + tailOffset2 - 90, 0.8 * R)
drawPt(triangle2Left)
var triangle2Right = getPt(triangle2Center, 180 + tailOffset + tailOffset2 + 90, 0.8 * R)
drawPt(triangle2Right)
ctx.fillStyle = '#ea6f5a'
ctx.beginPath()
ctx.moveTo(tailPt2.x, tailPt2.y)
ctx.lineTo(triangle2Left.x, triangle2Left.y)
ctx.lineTo(triangle2Right.x, triangle2Right.y)
ctx.fill()

效果:

第五步:删除多余的点和线

删除所有 drawPt 代码和坐标轴,就大功告成了!

效果:

总结

虽然最后绘制出了鲤鱼,但这条死气沉沉的鲤鱼显然不够灵动。下一篇,会在模仿的基础上加点小创新,实现更加灵动的小鲤鱼。

参考

附录

附上完整代码:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Title</title>
    <style>
        canvas {
            width: 500px;
            height: 500px;
            border: 1px solid #ccc;
        }
    </style>
</head>
<body>
<canvas id="canvas" width="500" height="500"></canvas>

<script>
    var canvas = document.getElementById('canvas')
    canvas.width = 500
    canvas.height = 500
    var ctx = canvas.getContext('2d')
    var width = canvas.width
    var height = canvas.height

    // 重心 middle point
    var mPt = {
        x: 250,
        y: 250
    }
    var R = 30 // 鱼头半径
    var angle = 0 // 鱼的角度

    function drawPt(pt) {
        ctx.fillStyle = '#000'
        ctx.beginPath()
        ctx.arc(pt.x, pt.y, 4, 0, 2 * Math.PI)
        ctx.fill()
    }

    function getPt(pt, angle, length) {
        return {
            x: pt.x + length * Math.cos(angle * Math.PI / 180),
            y: pt.y - length * Math.sin(angle * Math.PI / 180)
        }
    }

    function quickPt(pt) {
        var length = Math.sqrt((pt.x - mPt.x) * (pt.x - mPt.x) + (pt.y - mPt.y) * (pt.y - mPt.y))
        var angl = getAngle(mPt, pt)
        return getPt(mPt, angle + angl, length)
    }

    function getAngle(cPt, pt) {
        var angl = Math.atan((cPt.y - pt.y) / (pt.x - cPt.x)) * 180 / Math.PI
        if (pt.y < cPt.y) {
            if (pt.x < cPt.x) {
                //console.log('第二')
                angl = 90 + 90 + angl
            }
            if (pt.x > cPt.x) {
                //console.log('第一')
            }
        } else if (pt.y > cPt.y) {
            if (pt.x < cPt.x) {
                //console.log('第三')
                angl = 90 + 90 + angl
            }
            if (pt.x > cPt.x) {
                //console.log('第四')
                angl = 360 + angl
            }
            if (pt.x === cPt.x) {
                angl = 270
            }
        } else {
            if (pt.x < cPt.x) {
                angl = 180
            }
        }
        return angl
    }

    // 获取对称坐标
    function getSymmetricPt(pt) {
        var length = Math.sqrt((pt.x - mPt.x) * (pt.x - mPt.x) + (pt.y - mPt.y) * (pt.y - mPt.y))
        var angl = getAngle(mPt, pt)
        return getPt(mPt, angle * 2 - angl, length)
    }

    ctx.globalAlpha = '0.6'

    var headPt = getPt(mPt, angle, 1.5 * R) // 鱼头位置

    // 绘制鱼头
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.arc(headPt.x, headPt.y, R, 0, 2 * Math.PI)
    ctx.fill()

    // 身体
    var bodyLeft1 = quickPt({x: mPt.x + 1.5 * R, y: mPt.y - R})
    var bodyLeft2 = quickPt({x: mPt.x, y: mPt.y - 1.5 * R})
    var bodyLeft3 = quickPt({x: mPt.x - 1.5 * R, y: mPt.y - 0.8 * R})
    var bodyRight3 = getSymmetricPt(bodyLeft3)
    var bodyRight2 = getSymmetricPt(bodyLeft2)
    var bodyRight1 = getSymmetricPt(bodyLeft1)

    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.moveTo(bodyLeft1.x, bodyLeft1.y)
    ctx.quadraticCurveTo(bodyLeft2.x, bodyLeft2.y, bodyLeft3.x, bodyLeft3.y)
    ctx.lineTo(bodyRight3.x, bodyRight3.y)
    ctx.quadraticCurveTo(bodyRight2.x, bodyRight2.y, bodyRight1.x, bodyRight1.y)
    ctx.closePath()
    ctx.fill()

    // 右鳍
    var rightPt1 = getPt(headPt, angle - 110, 0.9 * R)
    var rightPt2 = getPt(mPt, angle - 70, 4 * R)
    var rightPt3 = getPt(mPt, angle - 90, 0.9 * R)
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.moveTo(rightPt1.x, rightPt1.y)
    ctx.quadraticCurveTo(rightPt2.x, rightPt2.y, rightPt3.x, rightPt3.y)
    ctx.fill()

    // 左鳍
    var leftPt1 = getSymmetricPt(rightPt1)
    var leftPt2 = getSymmetricPt(rightPt2)
    var leftPt3 = getSymmetricPt(rightPt3)
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.moveTo(leftPt1.x, leftPt1.y)
    ctx.quadraticCurveTo(leftPt2.x, leftPt2.y, leftPt3.x, leftPt3.y)
    ctx.fill()

    var TAIL_SIZE = 0.8
    var TAIL_SIZE2 = 0.4
    var TAIL_SIZE3 = 0.15
    var tailOffset = 20
    var tailOffset2 = 20

    // 尾部
    var tailPt = getPt(mPt, 180 + angle, 1.5 * R)
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.arc(tailPt.x, tailPt.y, TAIL_SIZE * R, 0, 2 * Math.PI)
    ctx.fill()

    var tailPtLeft = getPt(tailPt, 180 + tailOffset - 90, TAIL_SIZE * R)
    var tailPtRight = getPt(tailPt, 180 + tailOffset + 90, TAIL_SIZE * R)

    var tailPt2 = getPt(tailPt, 180 + angle + tailOffset, (TAIL_SIZE2 + TAIL_SIZE) * R)
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.arc(tailPt2.x, tailPt2.y, TAIL_SIZE2 * R, 0, 2 * Math.PI)
    ctx.fill()

    var tainPt2Left = getPt(tailPt2, 180 + tailOffset - 90, TAIL_SIZE2 * R)
    var tailPt2Right = getPt(tailPt2, 180 + tailOffset + 90, TAIL_SIZE2 * R)

    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.moveTo(tailPtLeft.x, tailPtLeft.y)
    ctx.lineTo(tainPt2Left.x, tainPt2Left.y)
    ctx.lineTo(tailPt2Right.x, tailPt2Right.y)
    ctx.lineTo(tailPtRight.x, tailPtRight.y)
    ctx.fill()

    var tailPt3 = getPt(tailPt2, 180 + angle + tailOffset + tailOffset2, 1.3 * R)
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.arc(tailPt3.x, tailPt3.y, TAIL_SIZE3 * R, 0, 2 * Math.PI)
    ctx.fill()

    var tainPt2Left2 = getPt(tailPt2, 180 + tailOffset + tailOffset2 - 90, TAIL_SIZE2 * R)
    var tailPt2Right2 = getPt(tailPt2, 180 + tailOffset + tailOffset2 + 90, TAIL_SIZE2 * R)

    var tainPt3Left = getPt(tailPt3, 180 + tailOffset + tailOffset2 - 90, TAIL_SIZE3 * R)
    var tailPt3Right = getPt(tailPt3, 180 + tailOffset + tailOffset2 + 90, TAIL_SIZE3 * R)

    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.moveTo(tainPt2Left2.x, tainPt2Left2.y)
    ctx.lineTo(tainPt3Left.x, tainPt3Left.y)
    ctx.lineTo(tailPt3Right.x, tailPt3Right.y)
    ctx.lineTo(tailPt2Right2.x, tailPt2Right2.y)
    ctx.fill()

    var triangleCenter = getPt(tailPt2, 180 + angle + tailOffset + tailOffset2, 0.8 * R)
    var triangleLeft = getPt(triangleCenter, 180 + tailOffset + tailOffset2 - 90, 0.6 * R)
    var triangleRight = getPt(triangleCenter, 180 + tailOffset + tailOffset2 + 90, 0.6 * R)
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.moveTo(tailPt2.x, tailPt2.y)
    ctx.lineTo(triangleLeft.x, triangleLeft.y)
    ctx.lineTo(triangleRight.x, triangleRight.y)
    ctx.fill()

    var triangle2Center = getPt(tailPt2, 180 + angle + tailOffset + tailOffset2, 1 * R)
    var triangle2Left = getPt(triangle2Center, 180 + tailOffset + tailOffset2 - 90, 0.8 * R)
    var triangle2Right = getPt(triangle2Center, 180 + tailOffset + tailOffset2 + 90, 0.8 * R)
    ctx.fillStyle = '#ea6f5a'
    ctx.beginPath()
    ctx.moveTo(tailPt2.x, tailPt2.y)
    ctx.lineTo(triangle2Left.x, triangle2Left.y)
    ctx.lineTo(triangle2Right.x, triangle2Right.y)
    ctx.fill()
</script>
</body>
</html>

Canvas 实现灵动的红鲤鱼动画(上)的更多相关文章

  1. [转]自定义Drawable实现灵动的红鲤鱼动画(上篇)

    此篇中的小鱼动画是模仿国外一个大牛做的flash动画,第一眼就爱上它了,简约灵动又不失美学,于是抽空试着尝试了一下,如下是我用Android实现的效果图:   小鱼儿 由于整个绘制分析过程比较繁琐所以 ...

  2. [转]自定义Drawable实现灵动的红鲤鱼动画(下篇)

      小鱼儿 上篇文章自定义Drawable实现灵动的红鲤鱼动画(上篇)我们绘制了可以摆动身体的小鱼,本篇就分享一下如何让小鱼游到手指点击的位置.用到的主要技术如下: 1).三阶贝塞尔曲线 2).Pat ...

  3. 基于canvas与原生JS的H5动画引擎

    前一段时间项目组里有一些H5动画的需求,由于没有专业的前端人员,便交由我这个做后台的研究相关的H5动画技术. 通过初步调研,H5动画的实现大概有以下几种方式: 1.基于css实现 这种方式比较简单易学 ...

  4. P4773 红鲤鱼与绿鲤鱼

    P4773 红鲤鱼与绿鲤鱼 暑假比赛的一个水题 总情况数:\(\dfrac{(a+b)!}{a!b!}\) 就是\(a+b\)条鲤鱼中选\(a\) or \(b\)的情况 反正我们会用完鲤鱼,则红鲤鱼 ...

  5. 基于canvas实现物理运动效果与动画效果(一)

    一.为什么要写这篇文章 某年某月某时某种原因,我在慕课网上看到了一个大神实现了关于小球的抛物线运动的代码,心中很是欣喜,故而写这篇文章来向这位大神致敬,同时也为了弥补自己在运动效果和动画效果制作方面的 ...

  6. HTML5 Canvas 超炫酷烟花绽放动画教程

    这是一个很酷的HTML5 Canvas动画,它将模拟的是我们现实生活中烟花绽放的动画特效,效果非常逼真,但是毕竟是电脑模拟,带女朋友看就算了,效果还是差了点,呵呵.这个HTML5 Canvas动画有一 ...

  7. uniapp中用canvas实现小球碰撞的小动画

    uniapp 我就不想喷了,踩了很多坑,把代码贡献出来让大家少踩些坑. 实现的功能: 生成n个球在canvas中运动,相互碰撞后会反弹,反弹后的速度计算我研究过了,可以参考代码直接用 防止球出边框 防 ...

  8. pygame-KidsCanCode系列jumpy-part10-角色动画(上)

    上一节学习如何利用spritesheet加载图片,但是player仍然是一张静态的图片,比较枯燥,我们要让它动起来! Player类,先把各种状态的图片加载起来: # 加载各种状态的图片序列 def ...

  9. Delphi XE2 之 FireMonkey 入门(12) - 动画(上)

    在 HD 窗体上添加一个 TAniIndicator, 修改其 Enabled 属性为 True, 动画完成了. 这是最简单的动画相关的控件了, 只有两个值得注意的属性: Enabled: Boole ...

随机推荐

  1. sharepoint rest api 创建文档库 文件夹

    function createFolder() { var requestHeaders = { "Accept": "application/json;odata=ve ...

  2. 移动端APP CSS Reset及注意事项CSS重置

    @charset "utf-8"; * { -webkit-box-sizing: border-box; box-sizing: border-box; } //禁止文本缩放 h ...

  3. 【源码分享】mui实现简单的手机音乐播放器

    mui实现简单的手机音乐播放器 最近先来无事,我用mui写了一个可以跨页面控制的音乐播放器.主要功能有上一曲,下一曲,播放,暂停,感兴趣的可以继续看下去. 说的总是不实在,直接上源码,有兴趣的可以读下 ...

  4. java 抛出异常

    这种方式serviceImpl 方法不用throws异常,比较方便 if(count>0){ //或者 IllegalArgumentException java的 throw new Ille ...

  5. 网络组Network Teaming

    网络组team:是将多个网卡聚合在一起,从而实现容错和提高吞吐量 1 创建网络组接口 nmcli connection add type team con-name TEAMname ifname I ...

  6. Bootstrap table使用心得---thead与td无法对齐的问题

    当使用工具条中的显示/隐藏列的时候, 经常出现表格的列头与内容无法对齐的问题. 1. 去掉option中的height,完美对齐,但当数据较多的时候,table会自动增加height,显示所有数据而不 ...

  7. Vivo展柜灯怎样设计才吸引大量客户?

    1.vivo展柜灯计划的目标是使消耗者在无限的时空中最无效地承受信息.因而,vivo展柜灯计划便是围绕着怎样无效地进步展现活动的服从和质量停止的.除了展现环境本身的计划之外,展现对象陈列方式的计划也是 ...

  8. JavaScript 原型与继承机制详解

    引言 初识 JavaScript 对象的时候,我以为 JS 是没有继承这种说法的,虽说 JS 是一门面向对象语言,可是面向对象的一些特性在 JS 中并不存在(比如多态,不过严格来说也没有继承).这就困 ...

  9. Day01_变量,数据类型_程序交互_流程控制

    python执行的两种方式: 1,交互的方式:  优点:可以及时调试程序,调试方法  缺点: 无法永久保存代码 2,保存在文件中执行  优点:可以永久保存代码,在执行的时候调用  缺点:不能即时调试代 ...

  10. 关于shiro权限管理的一些总结

    项目中最近开发用到了shiro,shiro作为一款轻量级的权限管理框架,在项目中主要想管理用户的登陆之后的页面访问,按钮,数据的显示.主要借用了shiro自己的页面权限标签. 当用户登录时->先 ...