BZOJ 3171 循环格 最小费用流
题目链接:
https://www.lydsy.com/JudgeOnline/problem.php?id=3171
题目大意:
一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子。每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0)。给定一个起始位置(r,c)
,你可以沿着箭头防线在格子间行走。即如果(r,c)是一个左箭头,那么走到(r,c-1);如果是右箭头那么走到(r,c+1);如果是上箭头那么走到(r-1,c);如果是下箭头那么走到(r+1,c);每一行和每一列都是循环的,即如果走出边界,你会出现在另一侧。
一个完美的循环格是这样定义的:对于任意一个起始位置,你都可以i沿着箭头最终回到起始位置。如果一个循环格不满足完美,你可以随意修改任意一个元素的箭头直到完美。给定一个循环格,你需要计算最少需要修改多少个元素使其完美。
思路:
注意题目说明,如果出界会到另一端。
对于每个点,拆成两个点ai bi
对于ai,s向ai连边,容量为1,费用为0
对于bi,bi向t连边,容量为1,费用为0
对于每个点向四周连边,容量为1,费用取决于方向,如果是该方向那么费用为0,否则费用为1。
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);//不可再使用scanf printf
#define Max(a, b) ((a) > (b) ? (a) : (b))//禁用于函数,会超时
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Mem(a) memset(a, 0, sizeof(a))
#define Dis(x, y, x1, y1) ((x - x1) * (x - x1) + (y - y1) * (y - y1))
#define MID(l, r) ((l) + ((r) - (l)) / 2)
#define lson ((o)<<1)
#define rson ((o)<<1|1)
#define Accepted 0
#pragma comment(linker, "/STACK:102400000,102400000")//栈外挂
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while (ch<''||ch>''){if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} typedef long long ll;
const int maxn = + ;
const int MOD = ;//const引用更快,宏定义也更快
const int INF = 1e9 + ;
const double eps = 1e-; struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost):u(u), v(v), c(c), f(f), cost(cost){}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int n, m;
void init(int n)
{
for(int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void addedge(int u, int v, int c, int cost)
{
//cout<<u<<" "<<v<<" "<<c<<" "<<cost<<endl;
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
for(int i = ; i <= n + ; i++)d[i] = INF;//Bellman算法的初始化
memset(inq, , sizeof(inq));
d[s] = ;inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ;a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for(int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if(now.c > now.f && d[v] > d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if(!inq[v]){q.push(v);inq[v] = ;}//Bellman 算法入队
}
}
}
if(d[t] == INF)return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for(int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MincostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while(bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
}
int dir[][] = {,,,,-,,,-};
char tmp[] = "DRUL";
int main()
{
int x, y;
char Map[][];
scanf("%d%d", &x, &y);
for(int i = ; i < x; i++)scanf("%s", Map[i]);
int s = , t = x * y * + ;
for(int i = ; i <= x; i++)
{
for(int j = ; j <= y; j++)
{
int ruid = y * (i - ) + j;//拆点
int chuid = ruid + x * y;
addedge(s, ruid, , );
addedge(chuid, t, , );
for(int k = ; k < ; k++)
{
int xx = i + dir[k][];
int yy = j + dir[k][];
if(xx == )xx = x;//出界处理
if(xx == x + )xx = ;
if(yy == )yy = y;
if(yy == y + )yy = ;
int cnt = y * (xx - ) + yy + x * y;//到达的点的编号
if(tmp[k] == Map[i-][j-])//费用为0
addedge(ruid, cnt, , );
else addedge(ruid, cnt, , );
}
}
}
n = t;//点数总数为t
ll ans = ;
MincostMaxflow(s, t, ans);
cout<<ans<<endl;
return Accepted;
}
BZOJ 3171 循环格 最小费用流的更多相关文章
- BZOJ 3171 循环格(费用流)
题意 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c),你可以沿着箭头防线在格子间行走.即如果(r ...
- BZOJ 3171 循环格(费用流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3171 题意: 思路:若能构成循环,则每个格子的入度出度 均为1.因此将每个点拆成两个点x ...
- 【BZOJ】【3171】【TJOI2013】循环格
网络流/费用流 最后能走回出发点……说明全部是环= = 而二分图上的环说明什么呢……完备匹配 对于每个点,它都有四个可能的匹配点,且已知它已经(伪)匹配的一个点,那么我们于已知每条(伪)匹配边,我们连 ...
- 【BZOJ 3171】 [Tjoi2013]循环格
Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...
- Bzoj 3171: [Tjoi2013]循环格 费用流
3171: [Tjoi2013]循环格 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 741 Solved: 463[Submit][Status][ ...
- BZOJ 3171 [Tjoi2013]循环格(费用流)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3171 [题目大意] 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子. 每 ...
- bzoj 3171: [Tjoi2013]循环格
#include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...
- 3171. [TJOI2013]循环格【费用流】
Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...
- BZOJ3171 Tjoi2013 循环格
传送门 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头 ...
随机推荐
- MyBatis --- 配置步骤
本文并非具体的细节,而是主要的配置步骤 概述 MyBatis 是半自动的ORM 框架,在MyBatis 整合 Spring Boot 的时候步骤比较繁琐,所以写下此篇纪录一下步骤. 使用 MyBati ...
- leetcode实践:找出两个有序数组的中位数
题目 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 代码实现 package com. ...
- spring data jpa 的简单使用
先说简单一下JPA 概念:JPA(Java Persistence API)是Sun官方提出的Java持久化规范.它为Java开发人员提供了一种对象/关联映射工具来管理Java应用中的关系数据. 影响 ...
- Android - fragment之间数据传递
<Fragment跳转时传递参数及结果回传的方法> <Fragment详解之五——Fragment间参数传递> <Android解惑 - 为什么要用Fragment.se ...
- 浅谈白鹭Egret
浅谈白鹭Egret 最近在做一个移动项目,技术选型的时候接触到了白鹭,简单了解了之后觉得挺合适的,最终就选择了这个引擎. 为什么会选择白鹭引擎呢? 我看上他主要有一下几点: 1 ...
- Tomcat启动慢原因之二 he APR based Apache Tomcat Native library which allows optimal performance in production environments was not found on the java.library.path
Tomcat启动时提示: 信息: The APR based Apache Tomcat Native library which allows optimal performance in prod ...
- 阿里云服务器linux主机如何添加swap分区
为什么要添加Swap分区?swap分区,即交换区,作用为:当系统的物理内存不够用的时候,就需要将物理内存中的一部分空间释放出来,以供当前运行的程序使用.那些被释放的空间可能来自一些很长时间没有什么操作 ...
- echarts隐藏之后的显示问题
好久没有更新博客了,今天搞了快一天的网页自适应,头晕...因为最近开始做项目,项目中需要用到图表方面的知识,于是乎接触到了echarts,所以其实我也算是新手了.只是近几天弄了很久的关于图表隐藏之后再 ...
- atitit.js 与c# java交互html5化的原理与总结.doc
atitit.js 与c# java交互html5化的原理与总结.doc 1. 实现html5化界面的要解决的策略1 1.1. Js交互1 1.2. 动态参数个数1 1.3. 事件监听2 2. sen ...
- 直接拿去用!每个App都会用到的LoadingLayout
前言 项目里都会遇到几种页面,分别为加载中.无网络.无数据.出错四种情况,经常要使用,所以封成库引用了,方便使用,顺便分享出来.先看一下效果: 原理比较简单,继承FrameLayout,在xml渲染完 ...