对于每个区间[l,r],显然右端点r是必须放置守卫的。考虑其不能监视到的点,构成一段段区间。一个非常显然但我就是想不到的性质是,对于这样的某个区间[x,y],在(y+1,r)内的点都是不能监视到这个区间内的任何一点的,证明考虑一下斜率之间的关系即可。于是该区间的最右一个守卫可以放置在y,也可以放置在y+1,这样可以得到一个显然的区间dp,暴力dp是O(n3)的,固定右端点后移动左端点同时记录答案就可以优化到O(n2)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 5010
#define inf 1000000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],f[N][N],tot;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5324.in","r",stdin);
freopen("bzoj5324.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
memset(f,,sizeof(f));
for (int i=;i<=n;i++)
{
double k=inf;
int ans=;f[i][i]=;tot^=;
for (int j=i-;j;j--)
if ((double)(a[i]-a[j])/(i-j)<k) f[j][i]=ans,tot^=ans,k=(double)(a[i]-a[j])/(i-j);
else
{
int x=j;
while (x>&&(double)(a[i]-a[x-])/(i-x+)>=k) x--;
for (int k=j;k>=x;k--) tot^=f[k][i]=ans+min(f[k][j],f[k][j+]);
ans+=min(f[x][j],f[x][j+]);j=x;
}
}
cout<<tot;
return ;
}

BZOJ5324 JXOI2018守卫(区间dp)的更多相关文章

  1. JXOI2018守卫 区间DP

    链接 https://loj.ac/problem/2545 思路 f[i][j]表示i到j区间的最小监视人数 可以预处理出来g[i][j],表示i能否监视到j (其实预处理的关系不大,完全可以直接判 ...

  2. BZOJ5324 JXOI2018 守卫

    传送门 这是我见过的为数不多的良心九怜题之一 题目大意 给定一段$n$个点构成的折线,第$i$个折点的坐标是$(i,h_i)$,你可以在$i$点放置一个视野,定义$i$能看到$j$当且仅当$i$处有视 ...

  3. 【BZOJ5324】[JXOI2018]守卫(动态规划)

    [BZOJ5324][JXOI2018]守卫(动态规划) 题面 BZOJ 洛谷 题解 既然只能看到横坐标在左侧的点,那么对于任意一个区间\([l,r]\)而言,\(r\)必须被选. 假设\(r\)看不 ...

  4. BZOJ5324 & 洛谷4563 & LOJ2545:[JXOI2018]守卫——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5324 https://www.luogu.org/problemnew/show/P4563 ht ...

  5. [JXOI2018]守卫

    嘟嘟嘟 正如某题解所说,这题很有误导性:我就一直在想凸包. 随便一个数据,就能把凸包hack掉: 这样我们的点G就gg了. 所以正解是什么呢?dp. 题解看这位老哥的吧,我感觉挺好懂的:题解 P456 ...

  6. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  7. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  8. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  9. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

随机推荐

  1. Android Library和Android APP、Java Library的区别

    Android Library和Android APP.Java Library的区别 Android Library在目录结构上与Android App相同,它能包含构建APP所需的一切(如源代码. ...

  2. FFmpeg+vs2013开发环境配置(windows)

    1.下载ffmpeg包(dll.include.lib)   https://ffmpeg.zeranoe.com/builds/         有3个版本:Static.Shared和Dev St ...

  3. 如何配置php客户端(phpredis)并连接Redis--华为DCS for Redis使用经验系列

    使用php连接Redis.Memcache等都需要进行扩展,以CentOS为例,介绍phpredis的客户端环境搭建. 第0步:准备工作 华为云上购买1台弹性云服务器ECS(我选了CentOS 6.3 ...

  4. codeforces 1140E Palindrome-less Arrays

    题目链接:http://codeforces.com/contest/1140/problem/E 题目大意: 如果一个数组的存在一个奇数长的回文就不好. 不是不好的数组是好的. 你可以把-1用1到k ...

  5. Vue 事件处理

    原生的js事件处理 原生的js事件处理,可以分为:直接内联执行代码,或者绑定事件函数. 在内联的事件处理函数内部或者事件绑定的方法内部的作用域中的this都是指向当前的dom对象.如何在vue绑定的元 ...

  6. roadhog中如何拷贝文件

    一:使用 public 目录 我们约定 public 目录下的文件会在 server 和 build 时被自动 copy 到输出目录(默认是 ./dist)下.所以可以在这里存放 favicon, i ...

  7. 微信小程序——音阶练耳 宣传页面

    音阶练耳是什么? 音阶练耳小程序是一款听音练习音阶,拥有简介界面的交互式小程序,以虚拟钢琴为辅助乐器,应用于日常练习,涵盖了五个八度内26种调式.以及下行中的所有调式与和声小调式的衍生,提高辨认音阶的 ...

  8. Notes of Daily Scrum Meeting(11.6 and 11.7)

    Notes of Daily Scrum Meeting(11.6 and 11.7) 因为七号星期五是放假的第一天,好几名队员要么是出去玩,要么是回家了,所以我们讨论之后在七号没有开始代码的编写, ...

  9. 第一次作业——MathExam285

    MathExam285 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 • Estimate ...

  10. 如何获取启动页activity

    启动页activity指App启动的第一个activity,介绍几种查看启动页activity的方法: 方法一:问开发,最有效的获取方式 方法二:dumpsys package 包名,前提是知道包名( ...