Description

 秦朝末年,楚汉相争。有一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是,韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有超过*名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更认为韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步逼近,楚军乱作一团。交战不久,楚军大败而逃。

Input

没有输入

Output

输出一行,值为韩信宣布的勇士数(在1000与1100之间)

Sample Input

 

Sample Output

#include <stdio.h>
int main()
{
int n,m;
int i;
for(i=;i<=;i++)
{
if(i%==&&i%==&&i%==)
{
printf("%d\n",i);
break;
}
}
return ;
}

Problem H: 深入浅出学算法009-韩信点兵的更多相关文章

  1. Problem E: 深入浅出学算法019-求n的阶乘

    Problem E: 深入浅出学算法019-求n的阶乘 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 5077  Solved: 3148 Descrip ...

  2. Problem B: 深入浅出学算法003-计算复杂度

    Description 算法复杂度一般分为:时间复杂度.空间复杂度.编程复杂度. 这三个复杂度本身是矛盾体,不能一味地追求降低某一复杂度,否则会带来其他复杂度的增加.在权衡各方面的情况下,降低时间复杂 ...

  3. Problem D: 深入浅出学算法005-数7

    Description 逢年过节,三五好友,相约小聚,酒过三旬,围桌数七. “数七”是一个酒桌上玩的小游戏.就是按照顺序,某人报一个10以下的数字,然后后面的人依次在原来的数字上加1,并喊出来,当然如 ...

  4. Problem G: 深入浅出学算法008-求佩尔方程的解

    Description 求关于x y的二次不定方程的解 x2-ny2=1 Input 多组输入数据,先输入组数T 然后输入正整数n(n<=100) Output 对于每组数据输出一行,求y< ...

  5. Problem F: 深入浅出学算法007-统计求和

    Description 求含有数字a且不能被a整除的4位整数的个数,并求这些整数的和 Input 多组测试数据,先输入整数T表示组数然后每组输入1个整数a(1<=a<=9) Output ...

  6. Problem E: 深入浅出学算法006-求不定方程的所有解

    Description 现有一方程ax+by=c,其中系数a.b.c均为整数,求符合条件的所有正整数解,要求按x由小到大排列,其中a b c 均为不大于1000的正整数 Input 多组测试数据,第一 ...

  7. Problem C: 深入浅出学算法004-求多个数的最小公倍数

    Description 求n个整数的最小公倍数 Input 多组测试数据,先输入整数T表示组数 然后每行先输入1个整数n,后面输入n个整数k1 k2...kn Output 求k1 k2 ...kn的 ...

  8. Problem A: 深入浅出学算法002-n个1

    Description 由n个1组成的整数能被K(K<10000)整除,n至少为多少? Input 多组测试数据,第一行输入整数T,表示组数 然后是T行,每行输入1个整数代表K Output 对 ...

  9. Problem A: 深入浅出学算法022-汉诺塔问题II

    #include<stdio.h> void hanio(int n,char a,char b,char c) { ) printf("%c->%c\n",a, ...

随机推荐

  1. 关于java线程锁synchronized修饰普通方法与静态方法的区别

    最近研究线程方面问题,关于这个synchronized锁修饰的问题,先是修饰普通方法,然后通过两个线程,各自执行自己对象的锁,发现方法执行互不影响,代码如下: private static int n ...

  2. sql 内联,左联,右联,全联

    联合查询效率较高,以下例子来说明联合查询(内联.左联.右联.全联)的好处: T1表结构(用户名,密码) userid (int) username varchar(20) password  varc ...

  3. 87.在ModelSim中添加Xilinx ISE仿真库

    在ModelSim中添加Xilinx ISE仿真库 说明: l ModelSim一定要安装在不带空格的目录下,即不要安装在“Program Files”目录下.如作者是安装在D:\softwares\ ...

  4. gcc -O0 -O1 -O2 -O3 四级优化选项及每级分别做什么优化【转】

    转自:http://blog.csdn.net/qinrenzhi/article/details/78334677 相关博客http://blog.chinaunix.net/uid-2495495 ...

  5. STM32 IAP升级

    STM32 IAP在线升级,用Jlink设置读保护后前5K字节是默认加了写保护的,导致IAP升级时擦除和写入FLASH不成功,可以做两个boot,前5k为第一个boot程序,上电时负责跳转到APP还是 ...

  6. yum怎么用?

    一.yum 简介 yum,是Yellow dog Updater, Modified 的简称,是杜克大学为了提高RPM 软件包安装性而开发的一种软件包管理器.起初是由yellow dog 这一发行版的 ...

  7. 十三、springboot集成定时任务(Scheduling Tasks)

    定时任务(Scheduling Tasks) 在springboot创建定时任务比较简单,只需2步: 1.在程序的入口加上@EnableScheduling注解. 2.在定时方法上加@Schedule ...

  8. RabbitMQ--work queues(二)

    封装一个task到一个message,并发送到queue.consumer会去除task并执行这个task. 这里我们简化了操作,发送消息到队列中,consumer取出消息计算里面'.'号有几个就sl ...

  9. Flask:静态文件&模板(0.1)

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 前面看了Flask的Quickstart文档,可是,一直没有练习里面的内容,这不,刚刚练习完毕,来写篇博文记录一下! ...

  10. MFC的定时函数 SetTimer和结束killTimer

    什么时候我们需要用到SetTimer函数呢?当你需要每个一段时间执行一件事的的时候就需要使用SetTimer函数了. 使用定时器的方法比较简单,通常告诉WINDOWS一个时间间隔,然后WINDOWS以 ...