D. Dividing Kingdom II

题目连接:

http://www.codeforces.com/contest/687/problem/D

Description

Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great. These two had some problems about the numbers they like, so they decided to divide the great kingdom between themselves.

The great kingdom consisted of n cities numbered from 1 to n and m bidirectional roads between these cities, numbered from 1 to m. The i-th road had length equal to wi. The Great Arya and Pari The Great were discussing about destructing some prefix (all road with numbers less than some x) and suffix (all roads with numbers greater than some x) of the roads so there will remain only the roads with numbers l, l + 1, ..., r - 1 and r.

After that they will divide the great kingdom into two pieces (with each city belonging to exactly one piece) such that the hardness of the division is minimized. The hardness of a division is the maximum length of a road such that its both endpoints are in the same piece of the kingdom. In case there is no such road, the hardness of the division is considered to be equal to  - 1.

Historians found the map of the great kingdom, and they have q guesses about the l and r chosen by those great rulers. Given these data, for each guess li and ri print the minimum possible hardness of the division of the kingdom.

Input

The first line of the input contains three integers n, m and q (1 ≤ n, q ≤ 1000, ) — the number of cities and roads in the great kingdom, and the number of guesses, respectively.

The i-th line of the following m lines contains three integers ui, vi and wi (1  ≤  ui,  vi  ≤  n, 0 ≤ wi ≤ 109), denoting the road number i connects cities ui and vi and its length is equal wi. It's guaranteed that no road connects the city to itself and no pair of cities is connected by more than one road.

Each of the next q lines contains a pair of integers li and ri (1  ≤ li ≤ ri ≤ m) — a guess from the historians about the remaining roads in the kingdom.

Output

For each guess print the minimum possible hardness of the division in described scenario.

Sample Input

5 6 5

5 4 86

5 1 0

1 3 38

2 1 33

2 4 28

2 3 40

3 5

2 6

1 3

2 3

1 6

Sample Output

-1

33

-1

-1

33

Hint

题意

给你一个图

然后给你n,m,q

表示这个图有n个点,m条边,一共q次询问

每次询问给你l,r

然后用l,r以内的边,去构成的一个图集合。

把这个集合的点分成两个部分,然后这个图的hardness,定义为这个图里面的最长边,且这个边左右连的城市相同

你想让这个边的大小尽量小,问是多少。

题解

如果只有一个询问的话,很容易想到是把边从大到小排序,然后贪心去扔到并查集看一看就好了,这样就是一个傻逼题。

然后他有Q次询问,感觉上来说好像是个莫队。

但是CF机器很快,所以就没必要写莫队了,直接NQ暴力去写这个就好了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e3+6;
struct node
{
int a,b,c,d;
}e[maxn*maxn];
bool cmp(node a,node b){
return a.c>b.c;
}
int fa[maxn*2];
int fi(int x){
if(fa[x]==x)return x;
return fa[x]=fi(fa[x]);
}
int uni(int x,int y){
fa[fi(x)]=fi(y);
}
int main(){
int n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].c);
e[i].d=i;
}
sort(e+1,e+1+m,cmp);
while(q--){
int l,r;
scanf("%d%d",&l,&r);
for(int i=1;i<=2*n;i++)
fa[i]=i;
int flag=0;
for(int i=1;i<=m;i++){
if(e[i].d<=r&&e[i].d>=l){
if(fi(e[i].a)==fi(e[i].b)){
flag=1;
printf("%d\n",e[i].c);
break;
}
else{
uni(e[i].a,e[i].b+n);
uni(e[i].b,e[i].a+n);
}
}
}
if(!flag)printf("-1\n");
}
}

Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 暴力并查集的更多相关文章

  1. Codeforces Round #360 (Div. 1) D. Dividing Kingdom II 并查集求奇偶元环

    D. Dividing Kingdom II   Long time ago, there was a great kingdom and it was being ruled by The Grea ...

  2. Codeforces Round #396 (Div. 2) D. Mahmoud and a Dictionary 并查集

    D. Mahmoud and a Dictionary 题目连接: http://codeforces.com/contest/766/problem/D Description Mahmoud wa ...

  3. Codeforces Round #250 (Div. 1) B. The Child and Zoo 并查集

    B. The Child and Zoo Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/438/ ...

  4. Codeforces Round #212 (Div. 2) D. Fools and Foolproof Roads 并查集+优先队列

    D. Fools and Foolproof Roads   You must have heard all about the Foolland on your Geography lessons. ...

  5. Codeforces Round #376 (Div. 2) A B C 水 模拟 并查集

    A. Night at the Museum time limit per test 1 second memory limit per test 256 megabytes input standa ...

  6. Codeforces Round #254 (Div. 2) B. DZY Loves Chemistry (并查集)

    题目链接 昨天晚上没有做出来,刚看题目的时候还把题意理解错了,当时想着以什么样的顺序倒,想着就饶进去了, 也被题目下面的示例分析给误导了. 题意: 有1-n种化学药剂  总共有m对试剂能反应,按不同的 ...

  7. Codeforces Round #260 (Div. 1) C. Civilization 树的中心+并查集

    题目链接: 题目 C. Civilization time limit per test1 second memory limit per test256 megabytes inputstandar ...

  8. Codeforces Round #385 (Div. 2)A B C 模拟 水 并查集

    A. Hongcow Learns the Cyclic Shift time limit per test 2 seconds memory limit per test 256 megabytes ...

  9. Codeforces Round #250 (Div. 2) D. The Child and Zoo 并查集

    D. The Child and Zoo time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

随机推荐

  1. html5新增表单元素

    1.验证 <form> <input type="email"></input>    验证邮箱 <input type="ur ...

  2. 随机数生成 && 生成执行锁

    生成随机数列: openssl rand -base64 uuidgen echo $RANDOM | md5sum echo $RANDOM | sha256sum 随机小写10个字母 随机数: [ ...

  3. KVM和远程管理工具virt-manager

    kvm在server端的部署(针对rhel6系统,可以构建本地更新源) 注意:如果只是安装管理工具,可以试试直接执行8步骤 1.对服务器实行kvm虚拟化首先需要确认服务器的物理硬件是否支持 cat / ...

  4. Graham求凸包模板

    struct P { double x, y; P(, ):x(x), y(y) {} double add(double a, double b){ ; return a+b; } P operat ...

  5. Effective STL 学习笔记: Item 22 ~ 24

    Effective STL 学习笔记: Item 22 ~ 24 */--> div.org-src-container { font-size: 85%; font-family: monos ...

  6. LAMP:用yum安装

    LAMP:用yum安装 Table of Contents 1 什么是LAMP 1.1 L 1.2 A 1.3 M 1.4 P 2 什么是yum 3 如何使用yum 3.1 基本的yum命令 3.1. ...

  7. Java学习(JDBC java连接数据库)

    一.概述 JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写 ...

  8. OpenCV处理直方图

    直方图可以用来描述各种不同的事物,如物体的色彩分布.物体边缘梯度模板,以及表示目标位置的当前假设. 简单的说,直方图就是对数据进行统计,将统计值组织到一系列事先定义好的bin中.bin中的数值是从数据 ...

  9. 【51nod】1559 车和矩形

    题解 离线读入,我们发现一个矩形能被保护,矩形内部所有列上必定有一辆车,或者所有行上必定有一辆车 分两次进行处理 第一次按照横坐标把车加进去,然后查询最大横坐标在这个位置的矩形,纵坐标区间里的车出现位 ...

  10. 数据挖掘算法:关联分析二(Apriori)

    二.Apriori算法 上文说到,大多数关联规则挖掘算法通常采用的策略是分解为两步: 频繁项集产生,其目标是发现满足具有最小支持度阈值的所有项集,称为频繁项集(frequent itemset). 规 ...