HBase学习之路 (六)过滤器
过滤器(Filter)
基础API中的查询操作在面对大量数据的时候是非常苍白的,这里Hbase提供了高级的查询方法:Filter。Filter可以根据簇、列、版本等更多的条件来对数据进行过滤,基于Hbase本身提供的三维有序(主键有序、列有序、版本有序),这些Filter可以高效的完成查询过滤的任务。带有Filter条件的RPC查询请求会把Filter分发到各个RegionServer,是一个服务器端(Server-side)的过滤器,这样也可以降低网络传输的压力。
要完成一个过滤的操作,至少需要两个参数。一个是抽象的操作符,Hbase提供了枚举类型的变量来表示这些抽象的操作符:LESS/LESS_OR_EQUAL/EQUAL/NOT_EUQAL等;另外一个就是具体的比较器(Comparator),代表具体的比较逻辑,如果可以提高字节级的比较、字符串级的比较等。有了这两个参数,我们就可以清晰的定义筛选的条件,过滤数据。
抽象操作符(比较运算符)
LESS <
LESS_OR_EQUAL <=
EQUAL =
NOT_EQUAL <>
GREATER_OR_EQUAL >=
GREATER >
NO_OP 排除所有
比较器(指定比较机制)
BinaryComparator 按字节索引顺序比较指定字节数组,采用 Bytes.compareTo(byte[])
BinaryPrefixComparator 跟前面相同,只是比较左端的数据是否相同
NullComparator 判断给定的是否为空
BitComparator 按位比较
RegexStringComparator 提供一个正则的比较器,仅支持 EQUAL 和非 EQUAL
SubstringComparator 判断提供的子串是否出现在 value 中
HBase过滤器的分类
比较过滤器
1、行键过滤器 RowFilter
Filter rowFilter = new RowFilter(CompareOp.GREATER, new BinaryComparator("95007".getBytes()));
scan.setFilter(rowFilter);
public class HbaseFilterTest { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter rowFilter = new RowFilter(CompareOp.GREATER, new BinaryComparator("95007".getBytes()));
scan.setFilter(rowFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} }
运行结果部分截图
2、列簇过滤器 FamilyFilter
Filter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryComparator("info".getBytes()));
scan.setFilter(familyFilter);
public class HbaseFilterTest { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter familyFilter = new FamilyFilter(CompareOp.EQUAL, new BinaryComparator("info".getBytes()));
scan.setFilter(familyFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} } }
3、列过滤器 QualifierFilter
Filter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryComparator("name".getBytes()));
scan.setFilter(qualifierFilter);
public class HbaseFilterTest { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter qualifierFilter = new QualifierFilter(CompareOp.EQUAL, new BinaryComparator("name".getBytes()));
scan.setFilter(qualifierFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} } }
4、值过滤器 ValueFilter
Filter valueFilter = new ValueFilter(CompareOp.EQUAL, new SubstringComparator("男"));
scan.setFilter(valueFilter);
public class HbaseFilterTest { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); Filter valueFilter = new ValueFilter(CompareOp.EQUAL, new SubstringComparator("男"));
scan.setFilter(valueFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(cell);
}
} } }
5、时间戳过滤器 TimestampsFilter
List<Long> list = new ArrayList<>();
list.add(1522469029503l);
TimestampsFilter timestampsFilter = new TimestampsFilter(list);
scan.setFilter(timestampsFilter);
public class HbaseFilterTest { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); List<Long> list = new ArrayList<>();
list.add(1522469029503l);
TimestampsFilter timestampsFilter = new TimestampsFilter(list);
scan.setFilter(timestampsFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }
专用过滤器
1、单列值过滤器 SingleColumnValueFilter ----会返回满足条件的整行
SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"info".getBytes(), //列簇
"name".getBytes(), //列
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
//如果不设置为 true,则那些不包含指定 column 的行也会返回
singleColumnValueFilter.setFilterIfMissing(true);
scan.setFilter(singleColumnValueFilter);
public class HbaseFilterTest2 { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); SingleColumnValueFilter singleColumnValueFilter = new SingleColumnValueFilter(
"info".getBytes(),
"name".getBytes(),
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
singleColumnValueFilter.setFilterIfMissing(true); scan.setFilter(singleColumnValueFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }
2、单列值排除器 SingleColumnValueExcludeFilter
SingleColumnValueExcludeFilter singleColumnValueExcludeFilter = new SingleColumnValueExcludeFilter(
"info".getBytes(),
"name".getBytes(),
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
singleColumnValueExcludeFilter.setFilterIfMissing(true); scan.setFilter(singleColumnValueExcludeFilter);
public class HbaseFilterTest2 { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); SingleColumnValueExcludeFilter singleColumnValueExcludeFilter = new SingleColumnValueExcludeFilter(
"info".getBytes(),
"name".getBytes(),
CompareOp.EQUAL,
new SubstringComparator("刘晨"));
singleColumnValueExcludeFilter.setFilterIfMissing(true); scan.setFilter(singleColumnValueExcludeFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }
3、前缀过滤器 PrefixFilter----针对行键
PrefixFilter prefixFilter = new PrefixFilter("9501".getBytes()); scan.setFilter(prefixFilter);
public class HbaseFilterTest2 { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); PrefixFilter prefixFilter = new PrefixFilter("9501".getBytes()); scan.setFilter(prefixFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }
4、列前缀过滤器 ColumnPrefixFilter
ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter("name".getBytes()); scan.setFilter(columnPrefixFilter);
public class HbaseFilterTest2 { private static final String ZK_CONNECT_KEY = "hbase.zookeeper.quorum";
private static final String ZK_CONNECT_VALUE = "hadoop1:2181,hadoop2:2181,hadoop3:2181"; private static Connection conn = null;
private static Admin admin = null; public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create();
conf.set(ZK_CONNECT_KEY, ZK_CONNECT_VALUE);
conn = ConnectionFactory.createConnection(conf);
admin = conn.getAdmin();
Table table = conn.getTable(TableName.valueOf("student")); Scan scan = new Scan(); ColumnPrefixFilter columnPrefixFilter = new ColumnPrefixFilter("name".getBytes()); scan.setFilter(columnPrefixFilter);
ResultScanner resultScanner = table.getScanner(scan);
for(Result result : resultScanner) {
List<Cell> cells = result.listCells();
for(Cell cell : cells) {
System.out.println(Bytes.toString(cell.getRow()) + "\t" + Bytes.toString(cell.getFamily()) + "\t" + Bytes.toString(cell.getQualifier())
+ "\t" + Bytes.toString(cell.getValue()) + "\t" + cell.getTimestamp());
}
} } }
5、分页过滤器 PageFilter
HBase学习之路 (六)过滤器的更多相关文章
- Hbase学习(三)过滤器 java API
Hbase学习(三)过滤器 HBase 的基本 API,包括增.删.改.查等. 增.删都是相对简单的操作,与传统的 RDBMS 相比,这里的查询操作略显苍白,只能根据特性的行键进行查询(Get)或者根 ...
- HBase 学习之路(七)——HBase过滤器详解
一.HBase过滤器简介 Hbase提供了种类丰富的过滤器(filter)来提高数据处理的效率,用户可以通过内置或自定义的过滤器来对数据进行过滤,所有的过滤器都在服务端生效,即谓词下推(predica ...
- HBase学习之路 (十一)HBase的协过滤器
协处理器—Coprocessor 1. 起源 Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hba ...
- HBase 学习之路(六)——HBase Java API 的基本使用
一.简述 截至到目前(2019.04),HBase 有两个主要的版本,分别是1.x 和 2.x ,两个版本的Java API有所不同,1.x 中某些方法在2.x中被标识为@deprecated过时.所 ...
- HBase学习之路 (七)HBase 原理
系统架构 错误图解 这张图是有一个错误点:应该是每一个 RegionServer 就只有一个 HLog,而不是一个 Region 有一个 HLog. 正确图解 从HBase的架构图上可以看出,HBas ...
- HBase 学习之路(十)—— HBase的SQL中间层 Phoenix
一.Phoenix简介 Phoenix是HBase的开源SQL中间层,它允许你使用标准JDBC的方式来操作HBase上的数据.在Phoenix之前,如果你要访问HBase,只能调用它的Java API ...
- HBase 学习之路(八)——HBase协处理器
一.简述 在使用HBase时,如果你的数据量达到了数十亿行或数百万列,此时能否在查询中返回大量数据将受制于网络的带宽,即便网络状况允许,但是客户端的计算处理也未必能够满足要求.在这种情况下,协处理器( ...
- HBase 学习之路(一)—— HBase简介
一.Hadoop的局限 HBase是一个构建在Hadoop文件系统之上的面向列的数据库管理系统. 要想明白为什么产生HBase,就需要先了解一下Hadoop存在的限制?Hadoop可以通过HDFS来存 ...
- zigbee学习之路(六):Time3(查询方式)
一.前言 通过上次的学习,相信大家对cc2530单片机的定时器的使用有了一定的了解,今天我们来介绍定时器3的使用,为什么介绍定时器3呢,因为它和定时器4功能是差不多的,所以学会定时器3,就基本掌握了c ...
随机推荐
- 网络基础1_TCP和HTTP
TCP/IP 是互联网相关的各类协议族的总称,并且进行分层,分为应用层,传输层,网络层,数据链路层这四层协议,分层的好处,是便于后期的优化与改进,扩展性好 应用层:主要为客户提供应用服务, ...
- HTTP2 帧基础知识以及Header、CONTINUATION、DATA帧相关资料:
HTTP2于2015年2月28日正式通过IETF组织批准发布,正式定稿.有关它的内容可以参考: HTTP2 概述 http://www.cnblogs.com/ghj1976/p/4552583. ...
- Spring中的IOC示例
Spring中的IOC示例 工程的大概内容是: 一个人在中国时用中国话问候大家,在国外时用英语问候大家. 其中, IHelloMessage是接口,用来定义输出问候信息 public interfac ...
- Go 语言实现 HTTP 层面的反向代理
最近对 Go 语言的反向代理使用得偏多,其实在大概两年前就写过 TCP 层面的代理,而且那时也是用的 Go 语言,不同之处在于之前只是偶尔尝试一下使用,最近是因为工作需要使用的.相比较于 TCP 层面 ...
- 序列化模块2 pickle
import pickle # dump的结果是bytes,dump用的f文件句柄需要以wb的形式打开,load所用的f是'rb'模式# 支持几乎所有对象的序列化# 对于对象的序列化需要这个对象对应的 ...
- AJAX异步的 JavaScript
什么是AJAX: AJAX = Asynchronous JavaScript and XML(异步的 JavaScript 和 XML). AJAX 不是新的编程语言,而是一种使用现有标准的新方法. ...
- git之回退
1:本地已commit,未push到远程仓库 1)git log: 查看commit日志,获取commit的id 2) git reset --hard commit_id: ...
- vue-cli中的webpack配置
编辑模式下显示正常,打开的时候不知道为啥排版有问题.segementfalut链接在这里 版本号 vue-cli 2.8.1 (终端通过vue -V 可查看) vue 2.2.2 webpack 2. ...
- io流中read方法使用不当导致运行异常的一点
public class CopyMp3test { public static void main(String[] args) throws IOException { FileInputStre ...
- python学习:数据类型检查
函数调用时可能会出现数据类型不匹配的问题,为了保证代码的鲁棒性,最好加上数据类型检查. 应用举例: if not isinstance(x, (int, float)): raise Typ ...