Description

题库链接

给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足“长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \(i\neq j,a_i\neq a_j\)”的价值和。

一个序列的价值定义为 \(\prod\limits_{i=1}^n a_i\) 。

\(1\leq A\leq 10^9,1\leq n\leq 500,p\leq 10^9\) 并且 \(p\) 为素数, \(p>A>n+1\) 。

Solution

考虑朴素的 \(\text{DP}\) 。

记 \(f_{i,j}\) 为长度为 \(j\) 的序列只含 \([1,i]\) 内的数的价值。

转移是考虑是否加上 \(i\) 这个元素并且如果加上放在哪一位,那么

\[f_{i,j}=f_{i-1,j-1}\times j\times i+f_{i-1,j}\]

这样转移是 \(O(An)\) 的,过不了...

据说 \(f_{i,j}\) 是一个关于 \(i\) 有关的 \(2j\) 次的多项式。

具体证明的话,可以差分之后用数学归纳法来证。

那么我们考虑 \(\text{DP}\) 出 \(f_{i,n},i\in[0,2n]\) 的值,用拉格朗日插值求出唯一解即可...

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 1000+5; int f[N][N], a, n, p, x[N], y[N], ifac[N], inv[N]; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%p;
b >>= 1, a = 1ll*a*a%p;
}
return ans;
}
int lagrange(int n, int *x, int *y, int xi) {
int ans = 0, s1 = 1;
for (int i = 0; i <= n; i++) {
s1 = 1ll*s1*(xi-x[i])%p;
inv[i] = quick_pow(xi-x[i], p-2);
}
ifac[1] = ifac[0] = 1;
for (int i = 2; i <= n; i++) ifac[i] = -1ll*p/i*ifac[p%i]%p;
for (int i = 2; i <= n; i++) ifac[i] = 1ll*ifac[i]*ifac[i-1]%p;
for (int i = 0; i <= n; i++)
(ans += 1ll*y[i]*s1%p*inv[i]%p*ifac[i]%p*(((n-i)&1) ? -1 : 1)*ifac[n-i]%p) %= p;
return (ans+p)%p;
}
void work() {
scanf("%d%d%d", &a, &n, &p);
for (int i = 0; i <= n*2; i++) f[i][0] = 1;
for (int i = 1; i <= n*2; i++)
for (int j = 1; j <= n; j++)
f[i][j] = (1ll*f[i-1][j-1]*i%p*j%p+f[i-1][j])%p;
if (a <= 2*n) {printf("%d\n", f[a][n]); return; }
for (int i = 0; i <= 2*n; i++) x[i] = i, y[i] = f[i][n];
printf("%d\n", lagrange(2*n, x, y, a));
}
int main() {work(); return 0; }

[BZOJ 2655]calc的更多相关文章

  1. bzoj 2655: calc [容斥原理 伯努利数]

    2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...

  2. BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2655 题解 据说有一种神仙容斥做法,但我不会. 以及貌似网上大多数人的dp和我的做法都不 ...

  3. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  4. bzoj 2655 calc——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先考虑DP.dp[ i ][ j ]表示值域为 i .选 j 个值的答案,则 dp[ ...

  5. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  6. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  7. 【BZOJ】2655: calc 动态规划+拉格朗日插值

    [题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1< ...

  8. calc BZOJ 2655

    calc [问题描述] 一个序列a1,...,an是合法的,当且仅当: 长度为给定的n. a1,...,an都是[1,A]中的整数. a1,...,an互不相等. 一个序列的值定义为它里面所有数的乘积 ...

  9. bzoj 2566 calc 拉格朗日插值

    calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 377  Solved: 226[Submit][Status][Discuss] Descr ...

随机推荐

  1. KVM NAT网络模式配置

    NAT方式原理 NAT方式是kvm安装后的默认方式.它支持主机与虚拟机的互访,同时也支持虚拟机访问互联网,但不支持外界访问虚拟机. 检查当前的网络设置: #virsh net-list --all N ...

  2. 常用到的一些js方法,记录一下

    获取字符串长度 function GetStringLength(str) { return str.replace(/[^\x00-\xff]/g, "00").length; ...

  3. ruby,gem,rails之间的关系

    Q:ruby,gem,rails之间的关系? 简单点说:Ruby是一种脚本语言,Gem是基于Ruby的一些开发工具包,Rails也算是一组Gem,专门用来做网站的.不同的Gem可能会依赖不同的Ruby ...

  4. STM32的时钟配置随笔

    以前使用STM32都是使用库函数开发,最近心血来潮想要使用寄存器来试试手感,于是乎便在工作之余研究了一下STM32F4的时钟配置,在此将经历过程写下来作为锻炼,同时也供和我一样的新手参考,如有错误或者 ...

  5. openstack 创建虚拟机的时候报错: Failed to allocate the network(s), not rescheduling.].

    错误: 实例 "test-gtj" 执行所请求操作失败,实例处于错误状态.: 请稍后再试 [错误: Build of instance 5ea8c935-ee07-4788-823 ...

  6. PyMysql复习

    参考:http://www.cnblogs.com/liwenzhou/p/8032238.html 使用pycharm操作数据库. 填一个数据库名,User:填root 填写要连接的数据库. 建表. ...

  7. FunDA(13)- 示范:用户自定义操作函数 - user defined tasks

    FunDA是一种函数式的编程工具,它所产生的程序是由许多功能单一的细小函数组合而成,这些函数就是用户自定义操作函数了.我们在前面曾经提过FunDA的运作原理模拟了数据流管道.流元素在管道流动的过程中被 ...

  8. pg_stat_statements跳过的坑

    pg_stat_statements跳过的坑 原本以为只是一个简单的插件扩展安装,三下五除二就能搞定,结果搞了很久也没找到问题所在.首先pg_stat_statements已经安装成功,且已经能够使用 ...

  9. 【xsy1237】 字符转换 矩阵快速幂

    题目大意:给你两个长度都为n,字符集为{a,b,c}的字符串S和T. 对于字符串S的任意一个字符,我们可以用cost[0]的代价,把字符a变成字符b.用cost[1]的代价,把字符b变成c,用cost ...

  10. Label Propagation Algorithm LPA 标签传播算法解析及matlab代码实现

    转载请注明出处:http://www.cnblogs.com/bethansy/p/6953625.html LPA算法的思路: 首先每个节点有一个自己特有的标签,节点会选择自己邻居中出现次数最多的标 ...