传送门啦

非常神奇的分块大法。

这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $

我们设数组 $ f[i][j] $ 表示在 % $ i $ 意义下余数是 $ j $ 的数的总和。

然后我们以 $ \sqrt(n) $ 为界限,小于 $ \sqrt(n) $ 的直接调用数组,剩下的暴力查找。修改的话看代码吧,真的不难。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 150005; inline int read(){
char ch = getchar();
int f = 1 ,x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} int n,m,a[maxn],x,y;
char flag;
long long f[390][390];//表示在 %i 意义下 余数是 j 的数的总和 int main(){
n = read(); m = read();
for(int i=1;i<=n;i++){
a[i] = read();
for(int j=1;j<=sqrt(n);j++)
f[j][i % j] += a[i];
}
while(m--){
cin >> flag;
x = read(); y = read();
if(flag == 'A'){
if(x * x <= n)
printf("%lld\n",f[x][y]);
else {
int sum = 0;
for(int j=y;j<=n;j+=x)
sum += a[j];
printf("%d\n",sum);
}
}
else {
for(int j=1;j<=sqrt(n);j++)
f[j][x % j] += y - a[x];
a[x] = y;
}
}
return 0;
}

洛谷P3396哈希冲突的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  4. 洛谷P3396 哈希冲突(分块)

    传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...

  5. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  6. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  7. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  8. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

  9. 【洛谷3950】部落冲突(LCT维护连通性)

    点此看题面 大致题意: 给你一棵树,\(3\)种操作:连一条边,删一条边,询问两点是否联通. \(LCT\)维护连通性 有一道类似的题目:[BZOJ2049][SDOI2008] Cave 洞穴勘测. ...

随机推荐

  1. vim 折叠的用法

    http://www.cnblogs.com/fakis/archive/2011/04/14/2016213.html 1. 折叠方式 可用选项来设定折叠方式: 可在Vim 配置文件中设置 set ...

  2. 前端学习 -- image标签和meta标签

    Image标签 使用img标签来向网页中引入一个外部图片, img标签也是一个自结束标签 属性: src:设置一个外部图片的路径 alt:可以用来设置在图片不能显示时,对图片的描述 搜索引擎可以通过a ...

  3. bcdiv bcmul

    /** * 分 转为 钱 */public static function cent2yuan($price) { return bcdiv($price,100,2);} /** * 元 转为 分 ...

  4. python中高阶函数与装饰器

    高阶函数的定义:传入参数有函数名或者返回值有内置函数名的函数. 最简单的高阶函数: def add(x, y, f):    return f(x) + f(y) add(-5, 6, abs) 常用 ...

  5. 关于connect by 误区讲解,纯属个人心得和经验,有图有文字

    本博客是自己在学习和工作途中的积累与总结,仅供自己参考,也欢迎大家转载,转载时请注明出处. http://www.cnblogs.com/king-xg/p/6927541.html 如果觉得对您有帮 ...

  6. JS中双等号“==”使用情况

    1.判断一个对象的值是否存在 var obj = {}; if(obj.a == null) { // todo } 2. 判断函数入参是否存在 function (a, b) { if(a == n ...

  7. Mongodb 笔记02 创建、更新和删除文档

    创建.更新和删除文档          1. 插入并保存: 1). 单条插入,insert : db.foo.insert({"bar":"baz"}) 2). ...

  8. 在IDEA中实战Git 实用

    工作中多人使用版本控制软件协作开发,常见的应用场景归纳如下: 假设小组中有两个人,组长小张,组员小袁 场景一:小张创建项目并提交到远程Git仓库 场景二:小袁从远程Git仓库上获取项目源码 场景三:小 ...

  9. JQuery的选择器对控件ID含有特殊字符的解决方法-涨姿势了!

    1.jquery类库在我们实际项目中用的很多,大家经常需要根据控件的id,获取对应的html元素. 但是:当id含有特殊字符的时候,是不能选中的. 2. 自己简单的测试了下,jquery的id选择器只 ...

  10. bzoj 1564 [NOI2009]二叉查找树(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1564 [题意] 给定一个Treap,总代价为深度*距离之和.可以每次以K的代价修改权值 ...