传送门啦

非常神奇的分块大法。

这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $

我们设数组 $ f[i][j] $ 表示在 % $ i $ 意义下余数是 $ j $ 的数的总和。

然后我们以 $ \sqrt(n) $ 为界限,小于 $ \sqrt(n) $ 的直接调用数组,剩下的暴力查找。修改的话看代码吧,真的不难。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 150005; inline int read(){
char ch = getchar();
int f = 1 ,x = 0;
while(ch > '9' || ch < '0'){if(ch == '-')f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){x = (x << 1) + (x << 3) + ch - '0';ch = getchar();}
return x * f;
} int n,m,a[maxn],x,y;
char flag;
long long f[390][390];//表示在 %i 意义下 余数是 j 的数的总和 int main(){
n = read(); m = read();
for(int i=1;i<=n;i++){
a[i] = read();
for(int j=1;j<=sqrt(n);j++)
f[j][i % j] += a[i];
}
while(m--){
cin >> flag;
x = read(); y = read();
if(flag == 'A'){
if(x * x <= n)
printf("%lld\n",f[x][y]);
else {
int sum = 0;
for(int j=y;j<=n;j+=x)
sum += a[j];
printf("%d\n",sum);
}
}
else {
for(int j=1;j<=sqrt(n);j++)
f[j][x % j] += y - a[x];
a[x] = y;
}
}
return 0;
}

洛谷P3396哈希冲突的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  4. 洛谷P3396 哈希冲突(分块)

    传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...

  5. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  6. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  7. P3396 哈希冲突

    很好的根号算法(这种思想好像叫根号分治?) 首先,暴力是Ο(n2)的 考虑预处理: for(p=1;p<=n;p++) //枚举模数 ans[p][i%p]+=value[i]; 看似很好但还是 ...

  8. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

  9. 【洛谷3950】部落冲突(LCT维护连通性)

    点此看题面 大致题意: 给你一棵树,\(3\)种操作:连一条边,删一条边,询问两点是否联通. \(LCT\)维护连通性 有一道类似的题目:[BZOJ2049][SDOI2008] Cave 洞穴勘测. ...

随机推荐

  1. Java之List和Set

    List.Set.数据结构.Collections 初次学习,涉及到List集合,Set集合和数据结构方面的一些知识,有错误还请批评指正 数据结构 数据存储的常用结构有:栈.队列.数组.链表和红黑树. ...

  2. 【bzoj2795】【Poi2012】A Horrible Poem

    题解: 询问区间的整循环节 设区间长度为$n$ 如果有循环节长为$x$和$y$,那由斐蜀定理得$gcd(x,y)$也一定为一个循环节: 假设最小的循环节长为$mn$,那么对于任何循环节长$x$,一定$ ...

  3. 用ladon框架封装Python为Webservice接口以及调用接口的方法

    一.用ladon框架封装Python为Webservice接口 功能实现的同时,希望将接口开放给别人,而封装python接口的一个再简单不过的框架Ladon,而且提供不同的协议,包括SOAP和Json ...

  4. [case]filesystem problem

    e2fsck -Nov-) fsck.ext4: Superblock invalid, trying backup blocks... fsck.ext4: Bad magic number in ...

  5. Codeforces 804D Expected diameter of a tree

    D. Expected diameter of a tree time limit per test 3 seconds memory limit per test 256 megabytes inp ...

  6. 一次ajax请求导致status为canceled的原因小记

    偶然碰到一个小Bug ajax请求执行后返回了一个canceled(状态码) 但是后台却接受了参数并且执行成功0.0 刚看到这个状态的时候是一脸懵逼的.... 之前并没见过这样的状态码 经过参数确认并 ...

  7. Docker多主机网络 OpenvSwitch

    一.Open vSwitch    Open vSwitch(以下简称为OVS),英文全称:OpenVirtual Switch,顾名思义,Open vSwitch就是开放虚拟交换.我们可以把他理解成 ...

  8. linux命令总结之traceroute命令

    通过traceroute我们可以知道信息从你的计算机到互联网另一端的主机是走的什么路径.当然每次数据包由某一同样的出发点(source)到达某一同样的目的地(destination)走的路径可能会不一 ...

  9. GetVersionEx 正确获取windows10版本

    vs2008直接将下面xml保存成文件添加到资源文件 vc的话insert-->Resource-->Custom-->输入24,ok-->id改为1-->把下面内容保存 ...

  10. pyqt4_应用例子(计算器,对话框,进度条,日历等等)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...