Java 并发系列(一) ThreadPoolExecutor源码解析及理解
// ctl非常重要,用整型表示,共32位,其中**高3位代表线程池状态,低29位代表工作线程数**;
// 线程池状态初始化为RUNNING,工作线程数为0
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); // 偏移量29
private static final int COUNT_BITS = Integer.SIZE - 3; // 理论最大线程数(约500万)
private static final int CAPACITY = (1 << COUNT_BITS) - 1; // -1左偏移29位(下同),运行中状态,既能接收新提交的任务,又能执行阻塞队列中的任务
private static final int RUNNING = -1 << COUNT_BITS; // 关闭状态,不再接收新提交的任务,但还能继续执行阻塞队列中的任务(调用shutdown()可以进入此状态)
private static final int SHUTDOWN = 0 << COUNT_BITS; // 停止状态,不再接收新提交的任务,也不再执行队列中的任务;而且会尝试中断正在执行的工作线程(调用shutdownNow()可以进入此状态)
private static final int STOP = 1 << COUNT_BITS; // 清理状态,当workCount(工作线程数)为0,且队列也为空时就是此状态
// SHUTDOWN -> TIDYING 线程数为0,队列也为空时会自动进入改状态
// STOP -> TIDYING 线程数为0时,就会自动进入该状态
private static final int TIDYING = 2 << COUNT_BITS; // 终结状态 可以通过调用awaitTermination方法来来等待线程池彻底终结
private static final int TERMINATED = 3 << COUNT_BITS; // 获取线程池运行状态;因为CAPACITY为29个1,取反后是29个0,再通过&运算会取出最高的3位
private static int runStateOf(int c) { return c & ~CAPACITY; } // 获取线程池中线程数;取出最低的29位
private static int workerCountOf(int c) { return c & CAPACITY; } // 将运行状态与线程数拼接起来,共有恰好有32位(因为rs已经左偏移29位了!)
private static int ctlOf(int rs, int wc) { return rs | wc; }
2. 核心构造方法
/*
* 1. 共有7个参数
* 2. 具体实现不再细说,只简单说下各个作用(就是使用流程)
* corePoolSize: 核心线程数,如果总工作线程数小于核心线程数, 有新任务时则会继续创建新的线程
* maximumPoolSize: 最大线程数,理论上包含了核心线程数和非核心线程数
* keepAliveTime: 一般上(allowCoreThreadTimeOut=false)是指非核心线程没有任务执行的存活时间(可以通过getTask()方法去分析)
* TimeUnit: keepAliveTime的时间单位
* workQueue: 阻塞队列,其中包含有SynchronousQueue, ArrayBlockingQueue, LinkedBlockingQueue; 存放核心线程执行不过来时被提交的任务
* threadFactory: 线程工厂,创建线程的地方
* handler: 拒绝策略,线程池满时会执行该策略rejectedExecution()方法;自带有4种拒绝策略,默认使用抛异常拒绝策略,另有什么都不做策略,用调用者线程执行任务策略,抛弃最旧任务策略
*
* 注意:1. 核心线程和非核心线程只是个逻辑的概念,某个线程被创建后,一开始可能是核心的,到后来会变成非核心的,身份并不固定。(看具体getTask()时会不会得到null)
* 2. 流程归总:当新任务被提交后,当工作线程数小于核心核心线程数时,会继续创建线程来处理此任务,否则会将其放在阻塞队列中;若阻塞队列已满,则会创建线程来处理此任务;若创建线程失败(不小于了最大线程数),则会执行拒绝策略。
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?
null :
AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
3. 疑问
Java 并发系列(一) ThreadPoolExecutor源码解析及理解的更多相关文章
- Java并发系列[10]----ThreadPoolExecutor源码分析
在日常的开发调试中,我们经常会直接new一个Thread对象来执行某个任务.这种方式在任务数较少的情况下比较简单实用,但是在并发量较大的场景中却有着致命的缺陷.例如在访问量巨大的网站中,如果每个请求都 ...
- 死磕 java同步系列之Phaser源码解析
问题 (1)Phaser是什么? (2)Phaser具有哪些特性? (3)Phaser相对于CyclicBarrier和CountDownLatch的优势? 简介 Phaser,翻译为阶段,它适用于这 ...
- 死磕 java同步系列之ReentrantReadWriteLock源码解析
问题 (1)读写锁是什么? (2)读写锁具有哪些特性? (3)ReentrantReadWriteLock是怎么实现读写锁的? (4)如何使用ReentrantReadWriteLock实现高效安全的 ...
- Java并发系列[2]----AbstractQueuedSynchronizer源码分析之独占模式
在上一篇<Java并发系列[1]----AbstractQueuedSynchronizer源码分析之概要分析>中我们介绍了AbstractQueuedSynchronizer基本的一些概 ...
- Java并发系列[3]----AbstractQueuedSynchronizer源码分析之共享模式
通过上一篇的分析,我们知道了独占模式获取锁有三种方式,分别是不响应线程中断获取,响应线程中断获取,设置超时时间获取.在共享模式下获取锁的方式也是这三种,而且基本上都是大同小异,我们搞清楚了一种就能很快 ...
- Java并发系列[5]----ReentrantLock源码分析
在Java5.0之前,协调对共享对象的访问可以使用的机制只有synchronized和volatile.我们知道synchronized关键字实现了内置锁,而volatile关键字保证了多线程的内存可 ...
- 死磕 java同步系列之CyclicBarrier源码解析——有图有真相
问题 (1)CyclicBarrier是什么? (2)CyclicBarrier具有什么特性? (3)CyclicBarrier与CountDownLatch的对比? 简介 CyclicBarrier ...
- 死磕 java同步系列之StampedLock源码解析
问题 (1)StampedLock是什么? (2)StampedLock具有什么特性? (3)StampedLock是否支持可重入? (4)StampedLock与ReentrantReadWrite ...
- 死磕 java同步系列之Semaphore源码解析
问题 (1)Semaphore是什么? (2)Semaphore具有哪些特性? (3)Semaphore通常使用在什么场景中? (4)Semaphore的许可次数是否可以动态增减? (5)Semaph ...
- 死磕 java同步系列之ReentrantLock源码解析(二)——条件锁
问题 (1)条件锁是什么? (2)条件锁适用于什么场景? (3)条件锁的await()是在其它线程signal()的时候唤醒的吗? 简介 条件锁,是指在获取锁之后发现当前业务场景自己无法处理,而需要等 ...
随机推荐
- python queue和生产者和消费者模型
queue队列 当必须安全地在多个线程之间交换信息时,队列在线程编程中特别有用. class queue.Queue(maxsize=0) #先入先出 class queue.LifoQueue(ma ...
- 团队开发心得(May)
经过之前一个多月的准备工作(包括去求调研.技术选型.知识储备等等),这个月开发工作终于步入正轨,下面谈谈我的心得体会. 个人收获方面,我选择了加入数据库小组,进行数据库方面的开发.刚开始的时候我是个小 ...
- 利用 NGINX 最大化 Python 性能,第二部分:负载均衡和监控
[编者按]本文主要介绍 NGINX 的主要功能以及如何通过 Nginx 优化 Python 应用性能.本文系国内 ITOM 管理平台 OneAPM 编译呈现. 本文上一篇系: 利用 NGINX 最大化 ...
- 1.CSS基础简介
一.基础简介 1.简介 CSS(Cascading Style Sheet)可译为“层叠样式表”或“级联样式表”,它定义如何显示 HTML 元素,用于控制Web页面的外观.通过使用CSS实现页面的内容 ...
- MVC 在视图中获取当前的Controller、Action的方式
在视图中获取Controller和Action的方式: Controller: @ViewContext.RouteData.Route.GetRouteData(this.Context).Valu ...
- C# 希尔排序
引用:对于大规模乱序数组插入排序很慢,因为它只会交换相邻的元素,因此元素只能一点一点的从数组的一端移动到另一端.例如,如果主键最小的元素正好在数组的尽头,要将它挪到正确的位置就需要N-1次移动.希尔排 ...
- [翻译] About Core Image
About Core Image Core Image is an image processing and analysis technology designed to provide near ...
- TreeSet集合的add()方法源码解析(01.Integer自然排序)
>TreeSet集合使用实例 >TreeSet集合的红黑树 存储与取出(图) >TreeSet的add()方法源码 TreeSet集合使用实例 package cn.itca ...
- AT89S52汇编实现l通过按键中断切换led灯的四种闪烁模式(单灯左移,单灯右移,双灯左移,双灯右移)
;通过P1口控制8路LED的四种闪烁模式,单独LED灯左移,单独LED灯右移,相邻两个灯左移,相邻两个灯右移;通过一个外部中断0来检测按键的跳变沿来切换闪烁模式,第一次按键按下弹起,灯的闪烁状态由单独 ...
- IP地址编址
比特:一比特就是一个数字,1或者0. 字节:以字节是7比特或者8比特,取决于是否使用奇偶校验 八位组:8比特构成 网络地址:用来将数据包发送到远端网路 比如10.0.0.0 广播地址:将信息发送给网络 ...