洛谷 P2184 贪婪大陆 解题报告
P2184 贪婪大陆
题目背景
面对蚂蚁们的疯狂进攻,小\(FF\)的\(Tower\) \(defence\)宣告失败……人类被蚂蚁们逼到了\(Greed\) \(Island\)上的一个海湾。现在,小\(FF\)的后方是一望无际的大海, 前方是变异了的超级蚂蚁。 小\(FF\)还有大好前程,他可不想命丧于此, 于是他派遣手下最后一批改造\(SCV\)布置地雷以阻挡蚂蚁们的进攻。
题目描述
小\(FF\)最后一道防线是一条长度为\(N\)的战壕, 小\(FF\)拥有无数多种地雷,而SCV每次可以在\([L,R]\)区间埋放同一种不同于之前已经埋放的地雷。 由于情况已经十万火急,小\(FF\)在某些时候可能会询问你在\([L',R']\)区间内有多少种不同的地雷, 他希望你能尽快的给予答复。
输入输出格式
输入格式:
第一行为两个整数\(n\)和\(m\); \(n\)表示防线长度,\(m\)表示\(SCV\)布雷次数及小\(FF\)询问的次数总和。
接下来有\(m\)行, 每行三个整数\(Q\),\(L\),\(R\); 若\(Q\)=1则表示\(SCV\)在\([L,R]\)这段区间布上一种地雷, 若\(Q=2\)则表示小\(FF\)询问当前\([L,R]\)区间总共有多少种地雷。
输出格式:
对于小FF的每次询问,输出一个答案(单独一行),表示当前区间地雷总数。
说明:
对于30%的数据: \(0<=n, m<=1000\);
对于100%的数据:\(0<=n, m<=10^5\).
说两个方法吧
方法一:维护区间和和合并区间时多加上的一部分,基于容斥原理,是这位大佬想到的
具体的:
我们维护\(sum\)代表这个区间的种类数,每次区间修改操作即为对二进制所划分的每个区间+1(不是对每个值,是对区间),防止退化我们用一个\(lazy1\)维护
这时候在区间合并的时候就会产生问题,会重复统计。
我们再维护一个值\(mer\)代表这个二进制区间被多少次划分时分开了,则统计答案时即为\(sum[ls]+sum[rs]-mer[ls]\)
这个也是区间操作,同样用一个\(lazy2\)来维护
Code:
#include <cstdio>
#define ls id<<1
#define rs id<<1|1
const int N=100010;
int sum[N<<2],mer[N<<2],lazy1[N<<2],lazy2[N<<2],n,m;
void push_down(int id,int l,int r)
{
if(l!=r)
{
sum[ls]+=lazy1[id];
sum[rs]+=lazy1[id];
mer[ls]+=lazy2[id];
lazy1[ls]+=lazy1[id];
lazy1[rs]+=lazy1[id];
lazy2[ls]+=lazy2[id];
lazy2[rs]+=lazy2[id];
}
lazy1[id]=lazy2[id]=0;
}
void change(int id,int l,int r,int L,int R)
{
if(l==L&&r==R)
{
sum[id]++;
lazy1[id]++;
lazy2[id]++;
return;
}
int Mid=L+R>>1;
if(r<=Mid)
change(ls,l,r,L,Mid);
else if(l>Mid)
change(rs,l,r,Mid+1,r);
else
{
mer[ls]++;
change(ls,l,Mid,L,Mid);
change(rs,Mid+1,r,Mid+1,R);
}
push_down(id,L,R);
sum[id]=sum[ls]+sum[rs]-mer[ls];
}
int query(int id,int l,int r,int L,int R)
{
push_down(id,L,R);
if(l==L&&r==R)
return sum[id];
int Mid=L+R>>1;
if(r<=Mid)
return query(ls,l,r,L,Mid);
else if(l>Mid)
return query(rs,l,r,Mid+1,r);
else
return query(ls,l,Mid,L,Mid)+query(rs,Mid+1,r,Mid+1,R)-mer[ls];
}
int main()
{
scanf("%d%d",&n,&m);
int q,l,r;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&q,&l,&r);
if(q==1) change(1,l,r,1,n);
else printf("%d\n",query(1,l,r,1,n));
}
return 0;
}
方法二:维护区间两端进行统计
我们发现,对于一个区间\(1\)~\(i\),\(i\)及其左边的区间的左端点的数量即为答案
对于一个区间\(i\)~\(n\),\(i\)左边的右端点不是它的答案
综合一下,对于一个区间\(l\)$r$,$r$及左边的左端点数量-$l$左边的右端点数量,不就是$l$\(r\)所覆盖的区间数量了吗?
单点修改,我们只需要用两个树状数组维护就行了
Code:
#include <cstdio>
const int N=100010;
int s[2][N],n,m;
int query(int typ,int x)
{
int sum=0;
while(x)
{
sum+=s[typ][x];
x-=x&-x;
}
return sum;
}
void add(int typ,int x)
{
while(x<=n)
{
s[typ][x]+=1;
x+=x&-x;
}
}
int main()
{
scanf("%d%d",&n,&m);
int q,l,r;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&q,&l,&r);
if(q==1)
add(0,l),add(1,r);
else
printf("%d\n",query(0,r)-query(1,l-1));
}
return 0;
}
2018.7.12
洛谷 P2184 贪婪大陆 解题报告的更多相关文章
- 洛谷P2184 贪婪大陆
题目背景 面对蚂蚁们的疯狂进攻,小FF的\(Tower\) \(defence\)宣告失败--人类被蚂蚁们逼到了\(Greed\) \(Island\)上的一个海湾.现在,小FF的后方是一望无际的大海 ...
- 洛谷 P2184 贪婪大陆
题面 又是一类比较套路的题呢? 假如我们的地雷都表示成 [l[i],r[i]] ,要求[L,R],那么就相当于要求满足 (l[i]<=R && r[i]>=L)的i的个数. ...
- 洛谷P2184——贪婪大陆
传送门:QAQQAQ 题意:给一个长度为$n$的区间,每次可以进行两种操作: 1.在$[l,r]$这个区间里放置一个和之前种类不同的炸弹 2.查询在$[l,r]$区间内有多少种不同种类的炸弹 思路:第 ...
- 洛谷 P1783 海滩防御 解题报告
P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...
- 洛谷 P4597 序列sequence 解题报告
P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...
- 洛谷1087 FBI树 解题报告
洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...
- 洛谷 P3349 [ZJOI2016]小星星 解题报告
P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 洛谷 P4705 玩游戏 解题报告
P4705 玩游戏 题意:给长为\(n\)的\(\{a_i\}\)和长为\(m\)的\(\{b_i\}\),设 \[ f(x)=\sum_{k\ge 0}\sum_{i=1}^n\sum_{j=1}^ ...
随机推荐
- Python3列表中获取相同元素出现位置的下标
前言 list: Python3的列表类型, 和其他语言中的数组类似 定义格式: l = ["a", "b", "c", "a&q ...
- MYSQL 表转 JavaBean 工具类
import org.apache.commons.lang.StringUtils; import java.io.BufferedWriter; import java.io.File; impo ...
- TP里where的查询方式,比如or应该怎么写?
这应该是个基础..只是我没有系统的学TP,所以用到了临时查了手册. 正常来说,thinkphp里的查询方式是: ThinkPHP可以支持直接使用字符串作为查询条件,但是大多数情况推荐使用数组或者对象来 ...
- iOS分类Category探索
什么是Category? Category是Objective-C 2.0之后添加的语言特性,Category的主要作用是为已经存在的类添加方法,一般称为分类,文件名格式是"NSObject ...
- 4星|《财经》2018年第10期:远程视界自我定位为“专科远程医疗联合体O2O平台”,主要盈利模式就是做融资租赁
<财经>2018年第10期 总第527期 旬刊 本期主要内容:做远程医疗资金链断裂:人工智能时代有可能让刘易斯观点论失败:小米的盈利模式刨析:陆奇在百度的改革.其中1.4都成了朋友圈热文. ...
- CS224n-作业1
0 前言 作业1对应的试题 作业1对应的启动代码 作业1主页 1 Softmax(10分) (a)(5分) 对于向量$x+c$的任一维度$i$,有: \begin{align*}\mbox{softm ...
- docker pull下来的镜像放哪儿了?
本机docker版本 docker –version Docker version 1.进入docker 目录 root@Rightsec:~# cd /var/lib/docker root@Rig ...
- swapon和swapoff命令详解
基础命令学习目录首页 原文链接:https://blog.csdn.net/yexiangCSDN/article/details/83182259 swapon命令用于激活Linux系统中交换空间, ...
- 互评Beta版本——Thunder组爱阅app(探路者团队测评)
基于NABCD评论作品,及改进建议 每个小组评论其他小组beta发布的作品. 1.根据(不限于)NABCD评论作品的选题; N(Need,需求):在Beta中加入了书友QQ群,以及反馈建议,更好的 ...
- Scrum Meeting 10.24
成员 已完成任务 下一阶段任务 用时 徐越 阅读后端代码,了解服务器的概念,以及服务器和终端间的通信机制 学习服务器配置 4h 赵庶宏 阅读后端代码,了解服务器的概念,以及服务器和终端间的通信机制 阅 ...