Luogu 1429 平面最近点对 | 平面分治
Luogu 1429 平面最近点对
题目描述
给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的
输入输出格式
输入格式:
第一行:n;2≤n≤200000
接下来n行:每行两个实数:x y,表示一个点的行坐标和列坐标,中间用一个空格隔开。
输出格式:
仅一行,一个实数,表示最短距离,精确到小数点后面4位。
这是一道平面上的分治。
这是一个平面,我们把它分成两半,使x坐标位于最中间的两个点分到左右两侧:
对于同在左侧或同在右侧的点对,我们可以递归处理;对于分别位于两侧的点对,如何处理呢?
设递归处理后我们知道同在左侧和同在右侧的点对中,最小距离是d;那么需要枚举的“分别位于两侧的点对”的两个端点的横坐标一定都位于中线左/右距离不超过d的范围内。
当枚举左侧的一个点的时候,右侧只需要找y坐标更小,且y坐标相差不超过d的点,与左侧的点配对。
有了以上两条限制,对于一个点p,另一侧需要与它配对的点不超过6个。
至于具体实现,要先把所有点按照x坐标排序,然后再递归的过程中按照y坐标排序。子区间内部点的顺序被修改(从按x排序变成按y排序),并不会影响母区间的划分,因为在递归进入子区间前母区间已经划分好了。
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define space putchar(' ')
#define enter putchar('\n')
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 200005;
int n;
struct point {
double x, y;
point operator - (const point &b){
return (point){x - b.x, y - b.y};
}
double norm(){
return sqrt(x * x + y * y);
}
bool operator < (const point &b) const{
return x < b.x;
}
} p[N], a[N], b[N], c[N];
double solve(int l, int r){
if(l >= r) return 1e20;
int mid = (l + r) >> 1;
double xmid = (p[mid].x + p[mid + 1].x) / 2;
double d = min(solve(l, mid), solve(mid + 1, r));
int pos = l, pb = 0, pc = 0, pl = l, pr = mid + 1;
while(pos <= r){
if(pl <= mid && (pr > r || p[pl].y < p[pr].y)){
if(p[pl].x > xmid - d) b[++pb] = p[pl];
a[pos++] = p[pl++];
}
else{
if(p[pr].x < xmid + d) c[++pc] = p[pr];
a[pos++] = p[pr++];
}
}
for(int i = l; i <= r; i++) a[i] = p[i];
for(int i = 1, j = 1; i <= pb || j <= pc;){
if(i <= pb && (j > pc || b[i].y < c[j].y)){
for(int k = j - 1; k && b[i].y - c[k].y < d; k--)
d = min(d, (b[i] - c[k]).norm());
i++;
}
else{
for(int k = i - 1; k && c[j].y - b[k].y < d; k--)
d = min(d, (c[j] - b[k]).norm());
j++;
}
}
return d;
}
int main(){
read(n);
for(int i = 1; i <= n; i++)
scanf("%lf%lf", &p[i].x, &p[i].y);
sort(p + 1, p + n + 1);
printf("%.4lf\n", solve(1, n));
return 0;
}
Luogu 1429 平面最近点对 | 平面分治的更多相关文章
- Vijos 1012 清帝之惑之雍正 平面最近点对(分治)
背景 雍正帝胤祯,生于康熙十七年(1678)是康熙的第四子.康熙61年,45岁的胤祯继承帝位,在位13年,死于圆明园.庙号世宗. 胤祯是在康乾盛世前期--康熙末年社会出现停滞的形式下登上历史舞台的.复 ...
- 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点
平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...
- Luogu P1429 平面最近点对 【分治】By cellur925
题目传送门 题目大意:给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的.$n$<=100000. $Algorithm$ 最朴素的$n^2$枚举肯定 ...
- 『Raid 平面最近点对』
平面最近点对 平面最近点对算是一个经典的问题了,虽然谈不上是什么专门的算法,但是拿出问题模型好好分析一个是有必要的. 给定\(n\)个二元组\((x,y)\),代表同一平面内的\(n\)个点的坐标,求 ...
- Luogu4423 BJWC2011 最小三角形 平面最近点对
传送门 题意:给出$N$个点,求其中周长最小的三角形(共线的也计算在内).$N \leq 2 \times 10^5$ 这道题唤起了我对平面最近点对的依稀记忆 考虑平面最近点对的分治,将分界线两边的求 ...
- Luogu P1429 平面最近点对(加强版)(分治)
P1429 平面最近点对(加强版) 题意 题目描述 给定平面上\(n\)个点,找出其中的一对点的距离,使得在这\(n\)个点的所有点对中,该距离为所有点对中最小的. 输入输出格式 输入格式: 第一行: ...
- 平面最近点对(分治nlogn)
平面最近点对,是指给出平面上的n个点,寻找点对间的最小距离 首先可以对按照x为第一关键字排序,然后每次按照x进行分治,左边求出一个最短距离d1,右边也求出一个最短距离d2,那么取d=min(d1, d ...
- P1429 平面最近点对(加强版)(分治)
P1429 平面最近点对(加强版) 主要思路: 分治,将点按横坐标为第1关键字升序排列,纵坐标为第2关键字升序排列,进入左半边和右半边进行分治. 设d为左右半边的最小点对值.然后以mid这个点为中心, ...
- poj3714 Raid(分治求平面最近点对)
题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...
随机推荐
- RabbitMQ入门:工作队列(Work Queue)
在上一篇博客<RabbitMQ入门:Hello RabbitMQ 代码实例>中,我们通过指定的队列发送和接收消息,代码还算是比较简单的. 假设有这一些比较耗时的任务,按照上一次的那种方式, ...
- PHP的学习路线规划
第一阶段:WEB的快速入门 前期入门学习我们需要学一些HTML+CSS+JS前端的一些技术,这个阶段不需要太深入的学习,学习到可以制作出一个像样点的静态页面就可以了.因为大家是学习PHP,对于新人来说 ...
- 火狐插件安装-基于web自动化测试
一.Firebug 安装 1. 打开火狐浏览器—选择右上角“打开菜单”(图一)----附件组件(图二) 图一 图二 2. 点击:扩展(图三)—-------用于所有附加组件的工具(图四)----选 ...
- jenkins设置定时任务
每次都手动的构建项目显然不够方便,有时候需要定时地执行自动化测试脚本.例如,每天晚上定时执行 pjenkins.py 文件来运行自动化测试项目. 设置定时任务 前面已经创建的 “python test ...
- centos安装eclise启动报错
A Java Runtime Environment (JRE) or Java Development Kit (JDK) must be avail http://blog.csdn.net/u0 ...
- python下graphviz安装
参考链接:https://blog.csdn.net/u013250416/article/details/72790754 1.安装Graphviz 在graphviz的官网(网址:http://w ...
- c# 写文件注意问题及用例展示
以txt写string举例,正确代码如下: private void xie() { FileStream fs = new FileStream("1.txt", FileMod ...
- Task 6.2冲刺会议八 /2015-5-21
今天把主界面大体完成了,摄像头的拼接和语音以及麦克风的功能都已经基本上实现了.但是登录界面到主界面的跳转还是没有成功.过程中遇到的问题有登录协议的地方没有明确,一直出现跳转连接异常.明天准备把跳转的部 ...
- 学习率(Learning rate)的理解以及如何调整学习率
1. 什么是学习率(Learning rate)? 学习率(Learning rate)作为监督学习以及深度学习中重要的超参,其决定着目标函数能否收敛到局部最小值以及何时收敛到最小值.合适的学习率 ...
- Intellij IDEA中file size exceeds configured limit解决
把Hadoop源码导入IDEA中后,其中有个ClientNamenodeProtocolProtos文件代码高达82997行,IDEA直接就不把它当java类看了,报file size exceeds ...