阅读目录

  • 一 客户端/服务器架构
  • 二 osi七层
  • 三 socket层
  • 四 socket是什么
  • 五 套接字发展史及分类
  • 六 套接字工作流程
  • 七 基于TCP的套接字
  • 八 基于UDP的套接字
  • 九 recv与recvfrom的区别
  • 十 粘包现象
  • 十一 什么是粘包
  • 十二 低级的解决粘包处理方法
  • 十三 高级的解决粘包处理方法
  • 十四 认证客户端的链接合法性
  • 十五 socketserver实现并发

一. 客户端/服务器架构

1. 两种情况

  • C/S架构  客户端/服务器端(打印机)
  • B/S架构  浏览器/服务器端(web服务)

C/S架构与socket的关系:我们学习socket就是为了完成C/S架构的开发

二. OSI七层

1. C/S架构的软件(软件属于应用层)是基于网络进行通信的。

2. 网络的核心即一堆协议,协议即标准,你想开发一款基于网络通信的软件,就必须遵循这些标准。

图1

TCP/IP协议族包括传输层、网络层、链路层,自己开发的应用程序工作在应用层。

三. socket层

在图1中,我们没有看到Socket的影子,那么它到底在哪里呢?还是用图来说话,一目了然。

图2

四. socket的定义

Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准的。

补充: 也有人将socket说成ip+port,ip是用来标识互联网中的一台主机的位置,而port是用来标识这台机器上的一个应用程序,ip地址是配置到网卡上的,而port是应用程序开启的,ip与port的绑定就标识了互联网中独一无二的一个应用程序,而程序的pid是同一台机器上不同进程或者线程的标识。

五.  套接字发展史及分类

套接字起源于 20 世纪 70 年代加利福尼亚大学伯克利分校版本的 Unix,即人们所说的 BSD Unix。 因此,有时人们也把套接字称为“伯克利套接字”或“BSD 套接字”。一开始,套接字被设计用在同 一台主机上多个应用程序之间的通讯。这也被称进程间通讯,或 IPC。套接字有两种(或者称为有两个种族),分别是基于文件型的和基于网络型的。

基于文件类型的套接字家族

套接字家族的名字:AF_UNIX

unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信。

基于网络类型的套接字家族

套接字家族的名字:AF_INET

(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我么只使用。AF_INET)

六.  套接字工作流程

一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。生活中的场景就解释了这工作原理,也许TCP/IP协议族就是诞生于生活中,这也不一定,看下图。

图3

先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束

socket模块函数用法

import socket
socket.socket(socket_family,socket_type,protocal=0)
# socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。
#获取tcp/ip套接字
tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
#获取udp/ip套接字
udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
#由于 socket 模块中有太多的属性。我们在这里破例使用了'from module import *'语句。使用 'from socket import *',我们就把 socket 模块里的所有属性都带到我们的命名空间里了,这样能 大幅减短我们的代码。
#例如tcpSock = socket(AF_INET, SOCK_STREAM)
服务端套接字函数
s.bind()    绑定(主机,端口号)到套接字
s.listen() 开始TCP监听
s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来
客户端套接字函数
s.connect()     主动初始化TCP服务器连接
s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常
公共用途的套接字函数
s.recv()            接收TCP数据
s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)
s.sendall() 发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完)
s.recvfrom() 接收UDP数据
s.sendto() 发送UDP数据
s.getpeername() 连接到当前套接字的远端的地址
s.getsockname() 当前套接字的地址
s.getsockopt() 返回指定套接字的参数
s.setsockopt() 设置指定套接字的参数
s.close() 关闭套接字
面向锁的套接字方法
s.setblocking()     设置套接字的阻塞与非阻塞模式
s.settimeout() 设置阻塞套接字操作的超时时间
s.gettimeout() 得到阻塞套接字操作的超时时间
面向文件的套接字的函数
s.fileno()          套接字的文件描述符
s.makefile() 创建一个与该套接字相关的文件

以打电话为流程的示例演示:

import socket
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
phone.bind(('127.0.0.1',8080)) #插电话卡 phone.listen(5) #开机,backlog print('starting....')
conn,addr=phone.accept() #接电话
print(conn)
print('client addr',addr)
print('ready to read msg')
client_msg=conn.recv(1024) #收消息
print('client msg: %s' %client_msg)
conn.send(client_msg.upper()) #发消息 conn.close()
phone.close()

server.py

import socket
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
phone.connect(('127.0.0.1',8080)) #拨通电话 phone.send('hello'.encode('utf-8')) #发消息 back_msg=phone.recv(1024)
print(back_msg) phone.close()

client.py

输出:

服务端

starting....
<socket.socket fd=4, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 8080), raddr=('127.0.0.1', 65172)>
client addr ('127.0.0.1', 65172)
ready to read msg
client msg: b'hello'

客户端

b'HELLO'

七. 基于TCP的套接字

 tcp服务端

ss = socket() #创建服务器套接字
ss.bind() #把地址绑定到套接字
ss.listen() #监听链接
inf_loop: #服务器无限循环
cs = ss.accept() #接受客户端链接
comm_loop: #通讯循环
cs.recv()/cs.send() #对话(接收与发送)
cs.close() #关闭客户端套接字
ss.close() #关闭服务器套接字(可选)

tcp客户端

cs = socket()    # 创建客户套接字
cs.connect() # 尝试连接服务器
comm_loop: # 通讯循环
cs.send()/cs.recv() # 对话(发送/接收)
cs.close() # 关闭客户套接字

socket通信流程与打电话流程类似,我们就以打电话为例来实现一个low版的套接字通信

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
import socket
ip_port=('127.0.0.1',9000) #电话卡
BUFSIZE=1024 #收发消息的尺寸
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
s.bind(ip_port) #手机插卡
s.listen(5) #手机待机 conn,addr=s.accept() #手机接电话
# print(conn)
# print(addr)
print('接到来自%s的电话' %addr[0]) msg=conn.recv(BUFSIZE) #听消息,听话
print(msg,type(msg)) conn.send(msg.upper()) #发消息,说话 conn.close() #挂电话 s.close() #手机关机 服务端

服务端

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
import socket
ip_port=('127.0.0.1',9000)
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.connect_ex(ip_port) #拨电话 s.send('linhaifeng nb'.encode('utf-8')) #发消息,说话(只能发送字节类型) feedback=s.recv(BUFSIZE) #收消息,听话
print(feedback.decode('utf-8')) s.close() #挂电话 客户端

客户端

上述流程的问题是,服务端只能接受一次链接,然后就彻底关闭掉了,实际情况应该是,服务端不断接受链接,然后循环通信,通信完毕后只关闭链接,服务器能够继续接收下一次链接,下面是修改版

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
import socket
ip_port=('127.0.0.1',8081)#电话卡
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
s.bind(ip_port) #手机插卡
s.listen(5) #手机待机 while True: #新增接收链接循环,可以不停的接电话
conn,addr=s.accept() #手机接电话
# print(conn)
# print(addr)
print('接到来自%s的电话' %addr[0])
while True: #新增通信循环,可以不断的通信,收发消息
msg=conn.recv(BUFSIZE) #听消息,听话 # if len(msg) == 0:break #如果不加,那么正在链接的客户端突然断开,recv便不再阻塞,死循环发生 print(msg,type(msg)) conn.send(msg.upper()) #发消息,说话 conn.close() #挂电话 s.close() #手机关机 服务端改进版

服务端改进版

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
import socket
ip_port=('127.0.0.1',8081)
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.connect_ex(ip_port) #拨电话 while True: #新增通信循环,客户端可以不断发收消息
msg=input('>>: ').strip()
if len(msg) == 0:continue
s.send(msg.encode('utf-8')) #发消息,说话(只能发送字节类型) feedback=s.recv(BUFSIZE) #收消息,听话
print(feedback.decode('utf-8')) s.close() #挂电话 客户端改进版

客户端改进版

问题:

在重启服务端时可能会遇到以下报错现象

注: 这个是由于你的服务端仍然存在四次挥手的time_wait状态在占用地址(如果不懂,请深入研究1.tcp三次握手,四次挥手 2.syn洪水攻击 3.服务器高并发情况下会有大量的time_wait状态的优化方法)

解决方法:

#加入一条socket配置,重用ip和端口
phone=socket(AF_INET,SOCK_STREAM)
phone.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加
phone.bind(('127.0.0.1',8080))

方法一

发现系统存在大量TIME_WAIT状态的连接,通过调整linux内核参数解决,
vi /etc/sysctl.conf 编辑文件,加入以下内容:
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_fin_timeout = 30 然后执行 /sbin/sysctl -p 让参数生效。 net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭; net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭; net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。 net.ipv4.tcp_fin_timeout 修改系統默认的 TIMEOUT 时间 方法二

方法二

八.  基于UDP的套接字

 udp服务端

ss = socket()   #创建一个服务器的套接字
ss.bind() #绑定服务器套接字
inf_loop: #服务器无限循环
cs = ss.recvfrom()/ss.sendto() # 对话(接收与发送)
ss.close() # 关闭服务器套接字

udp客户端

cs = socket()   # 创建客户套接字
comm_loop: # 通讯循环
cs.sendto()/cs.recvfrom() # 对话(发送/接收)
cs.close() # 关闭客户端套接字

udp套接字简单示例

服务端

import socket
ip_port=('127.0.0.1',9000)
BUFSIZE=1024
udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) udp_server_client.bind(ip_port) while True:
msg,addr=udp_server_client.recvfrom(BUFSIZE)
print(msg,addr) udp_server_client.sendto(msg.upper(),addr)

客户端

import socket
ip_port=('127.0.0.1',9000)
BUFSIZE=1024
udp_server_client=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) while True:
msg=input('>>: ').strip()
if not msg:continue udp_server_client.sendto(msg.encode('utf-8'),ip_port) back_msg,addr=udp_server_client.recvfrom(BUFSIZE)
print(back_msg.decode('utf-8'),addr)

输出

# 客户端
>>: 123
123 ('127.0.0.1', 9000)
>>: 3
3 ('127.0.0.1', 9000)
>>: 4
4 ('127.0.0.1', 9000) # 服务端
b'' ('127.0.0.1', 53066)
b'' ('127.0.0.1', 53066)
b'' ('127.0.0.1', 53066)

模拟QQ聊天(由于udp无连接,所以可以同时多个客户端去跟服务端通信)

import socket
ip_port=('127.0.0.1',8081)
udp_server_sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) #买手机
udp_server_sock.bind(ip_port) while True:
qq_msg,addr=udp_server_sock.recvfrom(1024)
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],qq_msg.decode('utf-8')))
back_msg=input('回复消息: ').strip() udp_server_sock.sendto(back_msg.encode('utf-8'),addr)

udp服务端

import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) qq_name_dic={
'TOM':('127.0.0.1',8081),
'JACK':('127.0.0.1',8081),
'一棵树':('127.0.0.1',8081),
'武大郎':('127.0.0.1',8081),
} while True:
qq_name=input('请选择聊天对象: ').strip()
while True:
msg=input('请输入消息,回车发送: ').strip()
if msg == 'quit':break
if not msg or not qq_name or qq_name not in qq_name_dic:continue
udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name]) back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8'))) udp_client_socket.close()

udp客户端1

import socket
BUFSIZE=1024
udp_client_socket=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) qq_name_dic={
'TOM':('127.0.0.1',8081),
'JACK':('127.0.0.1',8081),
'一棵树':('127.0.0.1',8081),
'武大郎':('127.0.0.1',8081),
} while True:
qq_name=input('请选择聊天对象: ').strip()
while True:
msg=input('请输入消息,回车发送: ').strip()
if msg == 'quit':break
if not msg or not qq_name or qq_name not in qq_name_dic:continue
udp_client_socket.sendto(msg.encode('utf-8'),qq_name_dic[qq_name]) back_msg,addr=udp_client_socket.recvfrom(BUFSIZE)
print('来自[%s:%s]的一条消息:\033[1;44m%s\033[0m' %(addr[0],addr[1],back_msg.decode('utf-8'))) udp_client_socket.close()

udp客户端2

输出:

# 服务端
来自[127.0.0.1:57038]的一条消息:喝酒去?
回复消息: 什么酒?女儿红有嘛?
来自[127.0.0.1:57039]的一条消息:唱歌去?
回复消息: 走,唱山歌! # 客户端1
请选择聊天对象: TOM
请输入消息,回车发送: 唱歌去?
来自[127.0.0.1:8081]的一条消息:走,唱山歌!
请输入消息,回车发送: #客户端2
请选择聊天对象: JACK
请输入消息,回车发送: 喝酒去?
来自[127.0.0.1:8081]的一条消息:什么酒?女儿红有嘛?
请输入消息,回车发送:

九. recv与recvfrom的区别

注: 发消息,都是将数据发送到己端的发送缓冲中,收消息都是从己端的缓冲区中收。

  • tcp:send发消息,recv收消息
  • udp:sendto发消息,recvfrom收消息

9.1 send与sendinto

tcp是基于数据流的,而udp是基于数据报的:

  • send(bytes_data):发送数据流,数据流bytes_data若为空,自己这段的缓冲区也为空,操作系统不会控制tcp协议发空包
  • sendinto(bytes_data,ip_port):发送数据报,bytes_data为空,还有ip_port,所有即便是发送空的bytes_data,数据报其实也不是空的,自己这端的缓冲区收到内容,操作系统就会控制udp协议发包。

9.2 recv与recvfrom

tcp协议

(1)如果收消息缓冲区里的数据为空,那么recv就会阻塞(阻塞很简单,就是一直在等着收)

(2)只不过tcp协议的客户端send一个空数据就是真的空数据,客户端即使有无穷个send空,也跟没有一个样。

(3)tcp基于链接通信

  • 基于链接,则需要listen(backlog),指定半连接池的大小
  • 基于链接,必须先运行的服务端,然后客户端发起链接请求
  • 对于mac系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端在收消息后加上if判断,空消息就break掉通信循环)
  • 对于windows/linux系统:如果一端断开了链接,那另外一端的链接也跟着完蛋recv将不会阻塞,收到的是空(解决方法是:服务端通信循环内加异常处理,捕捉到异常后就break掉通讯循环)

客户端发送为空,测试结果--->验证:(1)

客户端直接终止程序,测试结果--->验证:(2)

import subprocess
from socket import * phone=socket(AF_INET,SOCK_STREAM)
phone.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
phone.bind(('127.0.0.1',8080))
phone.listen(5) conn,addr=phone.accept() while True:
data=conn.recv(1024)
print('from client msg is ',data)
conn.send(data.upper())

服务端

import subprocess
from socket import * phone=socket(AF_INET,SOCK_STREAM)
phone.connect(('127.0.0.1',8080)) while True:
msg=input('>>: ')
phone.send(msg.encode('utf-8'))
print('Client message has been sent') data=phone.recv(1024)
print('from server msg is ',data.decode('utf-8'))
phone.close()

客户端

udp协议

(1)如果如果收消息缓冲区里的数据为“空”,recvfrom也会阻塞

(2)只不过udp协议的客户端sendinto一个空数据并不是真的空数据(包含:空数据+地址信息,得到的报仍然不会为空),所以客户端只要有一个sendinto(不管是否发送空数据,都不是真的空数据),服务端就可以recvfrom到数据。

(3)udp无链接

  • 无链接,因而无需listen(backlog),更加没有什么连接池之说了
  • 无链接,udp的sendinto不用管是否有一个正在运行的服务端,可以己端一个劲的发消息,只不过数据丢失
  • recvfrom收的数据小于sendinto发送的数据时,在mac和linux系统上数据直接丢失,在windows系统上发送的比接收的大直接报错
  • 只有sendinto发送数据没有recvfrom收数据,数据丢失

客户端发送空,看服务端结果--->验证(1)

from socket import *

ip_port=('127.0.0.1',9003)
bufsize=1024 udp_server=socket(AF_INET,SOCK_DGRAM)
udp_server.bind(ip_port) while True:
data1,addr=udp_server.recvfrom(bufsize)
print(data1)

服务端

from socket import *
ip_port=('127.0.0.1',9003)
bufsize=1024 udp_client=socket(AF_INET,SOCK_DGRAM) while True:
msg=input('>>: ')
udp_client.sendto(msg.encode('utf-8'),ip_port) #发送空,发现服务端可以接收空

客户端

分别运行服务端,客户端--->验证(2)

from socket import *

ip_port=('127.0.0.1',9003)
bufsize=1024 udp_server=socket(AF_INET,SOCK_DGRAM)
udp_server.bind(ip_port) data1,addr=udp_server.recvfrom(1)
print('第一次收了 ',data1)
data2,addr=udp_server.recvfrom(1)
print('第二次收了 ',data2)
data3,addr=udp_server.recvfrom(1)
print('第三次收了 ',data3)
print('--------结束----------')

服务端

from socket import *
ip_port=('127.0.0.1',9003)
bufsize=1024 udp_client=socket(AF_INET,SOCK_DGRAM) udp_client.sendto(b'hello',ip_port)
udp_client.sendto(b'world',ip_port)
udp_client.sendto(b'egon',ip_port)

客户端

不运行服务端,单独运行客户端,一点问题没有,但是消息丢了--->验证(3)

from socket import *

ip_port=('127.0.0.1',9003)
bufsize=1024 udp_server=socket(AF_INET,SOCK_DGRAM)
udp_server.bind(ip_port) data1,addr=udp_server.recvfrom(bufsize)
print('第一次收了 ',data1)
data2,addr=udp_server.recvfrom(bufsize)
print('第二次收了 ',data2)
data3,addr=udp_server.recvfrom(bufsize)
print('第三次收了 ',data3)
print('--------结束----------')

服务端

from socket import *
import time
ip_port=('127.0.0.1',9003)
bufsize=1024 udp_client=socket(AF_INET,SOCK_DGRAM) udp_client.sendto(b'hello',ip_port)
udp_client.sendto(b'world',ip_port)
udp_client.sendto(b'egon',ip_port) print('客户端发完消息啦')
time.sleep(100)

客户端

注:

1.你单独运行上面的udp的客户端,你发现并不会报错,相反tcp却会报错,因为udp协议只负责把包发出去,对方收不收,我根本不管,而tcp是基于链接的,必须有一个服务端先运行着,客户端去跟服务端建立链接然后依托于链接才能传递消息,任何一方试图把链接摧毁都会导致对方程序的崩溃。

2.上面的udp程序,你注释任何一条客户端的sendinto,服务端都会卡住,为什么?因为服务端有几个recvfrom就要对应几个sendinto,哪怕是sendinto(b'')那也要有。

十. 粘包现象

基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig)

from socket import *
import subprocess ip_port=('127.0.0.1',8080)
BUFSIZE=1024 tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5) while True:
conn,addr=tcp_socket_server.accept()
print('客户端',addr) while True:
cmd=conn.recv(BUFSIZE)
if len(cmd) == 0:break res=subprocess.Popen(cmd.decode('utf-8'),shell=True,
stdout=subprocess.PIPE,
stdin=subprocess.PIPE,
stderr=subprocess.PIPE) stderr=res.stderr.read()
stdout=res.stdout.read()
conn.send(stderr)
conn.send(stdout)

服务端

import socket
BUFSIZE=1024
ip_port=('127.0.0.1',8080) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port) while True:
msg=input('>>: ').strip()
if len(msg) == 0:continue
if msg == 'quit':break s.send(msg.encode('utf-8'))
act_res=s.recv(BUFSIZE) print(act_res.decode('utf-8'),end='')

客户端

输出

# 客户端
>>: ls
1.py
客户端.py
客户端1.py
客户端2.py
服务端.py
>>: ifconfig en0
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 78:4f:43:5b:a5:4c
inet6 fe80::d0:d821:dbf0:3d67%en0 prefixlen 64 secured scopeid 0x5
inet 192.168.31.165 netmask 0xffffff00 broadcast 192.168.31.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active
>>: ifconfig
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
options=1203<RXCSUM,TXCSUM,TXSTATUS,SW_TIMESTAMP>
inet 127.0.0.1 netmask 0xff000000
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
nd6 options=201<PERFORMNUD,DAD>
gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
stf0: flags=0<> mtu 1280
en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 78:4f:43:5b:a5:4c
inet6 fe80::d0:d821:dbf0:3d67%en0 prefixlen 64 secured scopeid 0x5
inet 192.168.31.165 netmask 0xffffff00 broadcast 192.168.31.255
nd6 options=201<PERFORMNUD,DAD>
media: autoselect
status: active
en1: flags=963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX> mtu 1500
options=60<TSO4,TSO6>
ether e2:00:ec:98:eb:00
media: autoselect <full-duplex>
status: inactive
en3: flags=963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX> mtu 1500
options=60<TSO4,TSO6>
ether e2:00:ec:98:eb:01
media: autoselect <full-duplex>
status: inactive
en2: flags=963<UP,BROADCAST,SMART,RUNNING,PROMISC,SIMPLEX> mtu 1500>>:
>>: # 服务端
客户端 ('127.0.0.1', 58194)

输出

上述程序是基于tcp的socket,在运行时会发生粘包现象

基于upd制作一个远程执行命令的程序

from socket import *
import subprocess ip_port=('127.0.0.1',9003)
bufsize=1024 udp_server=socket(AF_INET,SOCK_DGRAM)
udp_server.bind(ip_port) while True:
#收消息
cmd,addr=udp_server.recvfrom(bufsize)
print('用户命令----->',cmd) #逻辑处理
res=subprocess.Popen(cmd.decode('utf-8'),shell=True,stderr=subprocess.PIPE,stdin=subprocess.PIPE,stdout=subprocess.PIPE)
stderr=res.stderr.read()
stdout=res.stdout.read() #发消息
udp_server.sendto(stderr,addr)
udp_server.sendto(stdout,addr)
udp_server.close()

服务端

from socket import *
ip_port=('127.0.0.1',9003)
bufsize=1024 udp_client=socket(AF_INET,SOCK_DGRAM) while True:
msg=input('>>: ').strip()
udp_client.sendto(msg.encode('utf-8'),ip_port) data,addr=udp_client.recvfrom(bufsize)
print(data.decode('utf-8'),end='')

客户端

上述程序是基于udp的socket,在运行时永远不会发生粘包现象

注:

res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)

stderr和stdout结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码且只能从管道里读一次结果

十一.  粘包

1. 什么是粘包

粘包: 发送方发送两个字符串”hello”+”world”,接收方却一次性接收到了”helloworld”。

注: 只有TCP有粘包现象,UDP永远不会粘包

补充:

拆包:发送方发送字符串”helloworld”,接收方却接收到了两个字符串”hello”和”world”。

socket收发消息的原理,如下图所示:

发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。

例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看来,根本不知道该文件的字节流从何处开始,在何处结束。

 粘包问题: 主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。

此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。

  1. TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
  2. UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
  3. tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头。

udp的recvfrom是阻塞的,一个recvfrom(x)必须对一个一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠。

tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。

两种情况下会发生粘包现象:

1. 发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据量很小,会合到一起,产生粘包)

from socket import *
ip_port=('127.0.0.1',8085) tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5) conn,addr=tcp_socket_server.accept() data1=conn.recv(10)
data2=conn.recv(10) print('----->',data1.decode('utf-8'))
print('----->',data2.decode('utf-8')) conn.close() 服务端

服务端

import socket
BUFSIZE=1024
ip_port=('127.0.0.1',8085) s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(ip_port) s.send('hello'.encode('utf-8'))
s.send('feng'.encode('utf-8'))

客户端

输出

# 服务端
-----> hellofeng    #出现粘包现象
----->

2. 接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)

from socket import *
ip_port=('127.0.0.1',8089) tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(5) conn,addr=tcp_socket_server.accept() data1=conn.recv(2) #一次没有收完整
data2=conn.recv(10)#下次收的时候,会先取旧的数据,然后取新的 print('----->',data1.decode('utf-8'))
print('----->',data2.decode('utf-8')) conn.close()

服务端

客户端

输出

# 服务端
-----> he
-----> llo feng

拆包的发生情况

当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。

补充:

1. 为何tcp是可靠传输,udp是不可靠传输

基于tcp的数据传输参考:http://www.cnblogs.com/linhaifeng/articles/5937962.html

tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的。

而udp发送数据,对端是不会返回确认信息的,因此不可靠。

2. send(字节流)和recv(1024)及sendall

recv里指定的1024意思是从缓存里一次拿出1024个字节的数据

send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失

十二. 低级的解决粘包处理方法

问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据。

低级方式的处理方法:

import socket,subprocess
ip_port=('127.0.0.1',8080)
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(ip_port)
s.listen(5) while True:
conn,addr=s.accept()
print('客户端',addr)
while True:
msg=conn.recv(1024)
if not msg:break
res=subprocess.Popen(msg.decode('utf-8'),shell=True,\
stdin=subprocess.PIPE,\
stderr=subprocess.PIPE,\
stdout=subprocess.PIPE)
err=res.stderr.read()
if err:
ret=err
else:
ret=res.stdout.read()
data_length=len(ret)
conn.send(str(data_length).encode('utf-8'))
data=conn.recv(1024).decode('utf-8')
if data == 'recv_ready':
conn.sendall(ret)
conn.close()

服务端

import socket,time
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if len(msg) == 0:continue
if msg == 'quit':break s.send(msg.encode('utf-8'))
length=int(s.recv(1024).decode('utf-8'))
s.send('recv_ready'.encode('utf-8'))
send_size=0
recv_size=0
data=b''
while recv_size < length:
data+=s.recv(1024)
recv_size+=len(data) print(data.decode('utf-8'))

客户端

原因:

程序的运行速度远快于网络传输速度,所以在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗。

十三. 高级的解决粘包处理方法

思路: 为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据。

struct模块

该模块可以把一个类型,如数字,转成固定长度的bytes

>>> struct.pack('i',1111111111111)

import json,struct
#假设通过客户端上传1T:1073741824000的文件a.txt #为避免粘包,必须自定制报头
header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值 #为了该报头能传送,需要序列化并且转为bytes
head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输 #为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节
head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度 #客户端开始发送
conn.send(head_len_bytes) #先发报头的长度,4个bytes
conn.send(head_bytes) #再发报头的字节格式
conn.sendall(文件内容) #然后发真实内容的字节格式 #服务端开始接收
head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式
x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度 head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式
header=json.loads(json.dumps(header)) #提取报头 #最后根据报头的内容提取真实的数据,比如
real_data_len=s.recv(header['file_size'])
s.recv(real_data_len)
#_*_coding:utf-8_*_
#http://www.cnblogs.com/coser/archive/2011/12/17/2291160.html
import struct
import binascii
import ctypes values1 = (1, 'abc'.encode('utf-8'), 2.7)
values2 = ('defg'.encode('utf-8'),101)
s1 = struct.Struct('I3sf')
s2 = struct.Struct('4sI') print(s1.size,s2.size)
prebuffer=ctypes.create_string_buffer(s1.size+s2.size)
print('Before : ',binascii.hexlify(prebuffer))
# t=binascii.hexlify('asdfaf'.encode('utf-8'))
# print(t) s1.pack_into(prebuffer,0,*values1)
s2.pack_into(prebuffer,s1.size,*values2) print('After pack',binascii.hexlify(prebuffer))
print(s1.unpack_from(prebuffer,0))
print(s2.unpack_from(prebuffer,s1.size)) s3=struct.Struct('ii')
s3.pack_into(prebuffer,0,123,123)
print('After pack',binascii.hexlify(prebuffer))
print(s3.unpack_from(prebuffer,0))

关于struct的详细用法

import socket,struct,json
import subprocess
phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #就是它,在bind前加 phone.bind(('127.0.0.1',8080)) phone.listen(5) while True:
conn,addr=phone.accept()
while True:
cmd=conn.recv(1024)
if not cmd:break
print('cmd: %s' %cmd) res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
err=res.stderr.read()
print(err)
if err:
back_msg=err
else:
back_msg=res.stdout.read() conn.send(struct.pack('i',len(back_msg))) #先发back_msg的长度
conn.sendall(back_msg) #在发真实的内容 conn.close()

服务端(自定制报头)

import socket,time,struct

s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
res=s.connect_ex(('127.0.0.1',8080)) while True:
msg=input('>>: ').strip()
if len(msg) == 0:continue
if msg == 'quit':break s.send(msg.encode('utf-8')) l=s.recv(4)
x=struct.unpack('i',l)[0]
print(type(x),x)
# print(struct.unpack('I',l))
r_s=0
data=b''
while r_s < x:
r_d=s.recv(1024)
data+=r_d
r_s+=len(r_d) # print(data.decode('utf-8'))
print(data.decode('gbk')) #windows默认gbk编码

客户端(自定制报头)

原理分析: 我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个字节足够用了)

发送时:

先发报头长度

再编码报头内容然后发送

最后发真实内容

接收时:

先手报头长度,用struct取出来

根据取出的长度收取报头内容,然后解码,反序列化

从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容

示例1:

服务端
from socket import *
import struct,json ip_port=('127.0.0.1',8080)
client=socket(AF_INET,SOCK_STREAM)
client.connect(ip_port) while True:
cmd=input('>>: ')
if not cmd:continue
client.send(bytes(cmd,encoding='utf-8')) head=client.recv(4)
head_json_len=struct.unpack('i',head)[0]
head_json=json.loads(client.recv(head_json_len).decode('utf-8'))
data_len=head_json['data_size'] recv_size=0
recv_data=b''
while recv_size < data_len:
recv_data+=client.recv(1024)
recv_size+=len(recv_data) print(recv_data.decode('utf-8'))
#print(recv_data.decode('gbk')) #windows默认gbk编码

客户端

示例2:

模拟FTP上传下载文件

import socket
import struct
import json
import subprocess
import os class MYTCPServer:
address_family = socket.AF_INET socket_type = socket.SOCK_STREAM allow_reuse_address = False max_packet_size = 8192 coding='utf-8' request_queue_size = 5 server_dir='file_upload' def __init__(self, server_address, bind_and_activate=True):
"""Constructor. May be extended, do not override."""
self.server_address=server_address
self.socket = socket.socket(self.address_family,
self.socket_type)
if bind_and_activate:
try:
self.server_bind()
self.server_activate()
except:
self.server_close()
raise def server_bind(self):
"""Called by constructor to bind the socket.
"""
if self.allow_reuse_address:
self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.socket.bind(self.server_address)
self.server_address = self.socket.getsockname() def server_activate(self):
"""Called by constructor to activate the server.
"""
self.socket.listen(self.request_queue_size) def server_close(self):
"""Called to clean-up the server.
"""
self.socket.close() def get_request(self):
"""Get the request and client address from the socket.
"""
return self.socket.accept() def close_request(self, request):
"""Called to clean up an individual request."""
request.close() def run(self):
while True:
self.conn,self.client_addr=self.get_request()
print('from client ',self.client_addr)
while True:
try:
head_struct = self.conn.recv(4)
if not head_struct:break head_len = struct.unpack('i', head_struct)[0]
head_json = self.conn.recv(head_len).decode(self.coding)
head_dic = json.loads(head_json) print(head_dic)
#head_dic={'cmd':'put','filename':'a.txt','filesize':123123}
cmd=head_dic['cmd']
if hasattr(self,cmd):
func=getattr(self,cmd)
func(head_dic)
except Exception:
break def put(self,args):
file_path=os.path.normpath(os.path.join(
self.server_dir,
args['filename']
)) filesize=args['filesize']
recv_size=0
print('----->',file_path)
with open(file_path,'wb') as f:
while recv_size < filesize:
recv_data=self.conn.recv(self.max_packet_size)
f.write(recv_data)
recv_size+=len(recv_data)
print('recvsize:%s filesize:%s' %(recv_size,filesize)) tcpserver1=MYTCPServer(('127.0.0.1',8080)) tcpserver1.run() #下列代码与本题无关
class MYUDPServer: """UDP server class."""
address_family = socket.AF_INET socket_type = socket.SOCK_DGRAM allow_reuse_address = False max_packet_size = 8192 coding='utf-8' def get_request(self):
data, client_addr = self.socket.recvfrom(self.max_packet_size)
return (data, self.socket), client_addr def server_activate(self):
# No need to call listen() for UDP.
pass def shutdown_request(self, request):
# No need to shutdown anything.
self.close_request(request) def close_request(self, request):
# No need to close anything.
pass 服务端

服务端

import socket
import struct
import json
import os class MYTCPClient:
address_family = socket.AF_INET socket_type = socket.SOCK_STREAM allow_reuse_address = False max_packet_size = 8192 coding='utf-8' request_queue_size = 5 def __init__(self, server_address, connect=True):
self.server_address=server_address
self.socket = socket.socket(self.address_family,
self.socket_type)
if connect:
try:
self.client_connect()
except:
self.client_close()
raise def client_connect(self):
self.socket.connect(self.server_address) def client_close(self):
self.socket.close() def run(self):
while True:
inp=input(">>: ").strip()
if not inp:continue
l=inp.split()
cmd=l[0]
if hasattr(self,cmd):
func=getattr(self,cmd)
func(l) def put(self,args):
cmd=args[0]
filename=args[1]
if not os.path.isfile(filename):
print('file:%s is not exists' %filename)
return
else:
filesize=os.path.getsize(filename) head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}
print(head_dic)
head_json=json.dumps(head_dic)
head_json_bytes=bytes(head_json,encoding=self.coding) head_struct=struct.pack('i',len(head_json_bytes))
self.socket.send(head_struct)
self.socket.send(head_json_bytes)
send_size=0
with open(filename,'rb') as f:
for line in f:
self.socket.send(line)
send_size+=len(line)
print(send_size)
else:
print('upload successful') client=MYTCPClient(('127.0.0.1',8080)) client.run()

客户端

十四.  认证客户端的链接合法性

如果你想在分布式系统中实现一个简单的客户端链接认证功能,又不像SSL那么复杂,那么利用hmac+加盐的方式来实现。

from socket import *
import hmac,os secret_key=b'linhaifeng bang bang bang'
def conn_auth(conn):
'''
认证客户端链接
:param conn:
:return:
'''
print('开始验证新链接的合法性')
msg=os.urandom(32)
conn.sendall(msg)
h=hmac.new(secret_key,msg)
digest=h.digest()
respone=conn.recv(len(digest))
return hmac.compare_digest(respone,digest) def data_handler(conn,bufsize=1024):
if not conn_auth(conn):
print('该链接不合法,关闭')
conn.close()
return
print('链接合法,开始通信')
while True:
data=conn.recv(bufsize)
if not data:break
conn.sendall(data.upper()) def server_handler(ip_port,bufsize,backlog=5):
'''
只处理链接
:param ip_port:
:return:
'''
tcp_socket_server=socket(AF_INET,SOCK_STREAM)
tcp_socket_server.bind(ip_port)
tcp_socket_server.listen(backlog)
while True:
conn,addr=tcp_socket_server.accept()
print('新连接[%s:%s]' %(addr[0],addr[1]))
data_handler(conn,bufsize) if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
server_handler(ip_port,bufsize)

服务端

from socket import *
import hmac,os secret_key=b'linhaifeng bang bang bang'
def conn_auth(conn):
'''
验证客户端到服务器的链接
:param conn:
:return:
'''
msg=conn.recv(32)
h=hmac.new(secret_key,msg)
digest=h.digest()
conn.sendall(digest) def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port) conn_auth(tcp_socket_client) while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close() if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(合法)

from socket import *

def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port) while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close() if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(非法:不知道加密方式)

from socket import *
import hmac,os secret_key=b'linhaifeng bang bang bang1111'
def conn_auth(conn):
'''
验证客户端到服务器的链接
:param conn:
:return:
'''
msg=conn.recv(32)
h=hmac.new(secret_key,msg)
digest=h.digest()
conn.sendall(digest) def client_handler(ip_port,bufsize=1024):
tcp_socket_client=socket(AF_INET,SOCK_STREAM)
tcp_socket_client.connect(ip_port) conn_auth(tcp_socket_client) while True:
data=input('>>: ').strip()
if not data:continue
if data == 'quit':break tcp_socket_client.sendall(data.encode('utf-8'))
respone=tcp_socket_client.recv(bufsize)
print(respone.decode('utf-8'))
tcp_socket_client.close() if __name__ == '__main__':
ip_port=('127.0.0.1',9999)
bufsize=1024
client_handler(ip_port,bufsize)

客户端(非法:不知道secret_key)

十五. socketserver实现并发

待补充...

参考资料: http://www.cnblogs.com/linhaifeng/articles/6129246.html

Python之路【第十篇】: python基础之socket编程的更多相关文章

  1. 【Python之路】特别篇--Python面向对象(初级篇)

    概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最易被初学 ...

  2. 【Python之路】第九篇--Python基础之线程、进程和协程

    进程与线程之间的关系 线程是属于进程的,线程运行在进程空间内,同一进程所产生的线程共享同一内存空间,当进程退出时该进程所产生的线程都会被强制退出并清除.线程可与属于同一进程的其它线程共享进程所拥有的全 ...

  3. Python学习【第十篇】基础之杂货铺

    字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存. 百分号方式: ...

  4. Python之路(第二十篇) subprocess模块

    一.subprocess模块 subprocess英文意思:子进程 那什么是进程呢? (一)关于进程的相关理论基础知识 进程是对正在运行程序的一个抽象,进程的概念起源于操作系统,是操作系统最核心的概念 ...

  5. python之路第四篇(基础篇)

    一.冒泡算法实现: 方法一: li = [13,33,12,80,66,1] print li for m in range(4): num1 = li[m] num2 = li[m+1] if nu ...

  6. Python之路(第十篇)迭代器协议、for循环机制、三元运算、列表解析式、生成器

    一.迭代器协议 a迭代的含义 迭代器即迭代的工具,那什么是迭代呢? #迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 b为何要有迭代器? 对于序列类型:字符串.列表 ...

  7. 【Python之路】第一篇--Linux基础命令

    pwd 命令 查看”当前工作目录“的完整路径 pwd -P # 显示出实际路径,而非使用连接(link)路径:pwd显示的是连接路径 .   表示当前目录 ..  表示上级目录 /  表示根目录 ls ...

  8. Python之路(第八篇)Python内置函数、zip()、max()、min()

    一.python内置函数 abs() 求绝对值 例子 print(abs(-2)) all() 把序列中每一个元素做布尔运算,如果全部都是true,就返回true, 但是如果是空字符串.空列表也返回t ...

  9. Python之路(第五篇) Python基本数据类型集合、格式化、函数

    一.变量总结 1.1 变量定义 记录某种状态或者数值,并用某个名称代表这个数值或状态. 1.2 变量在内存中的表现形式 Python 中一切皆为对象,数字是对象,列表是对象,函数也是对象,任何东西都是 ...

  10. 【Python之路】特别篇--Python正则表达式

    正则表达式的基础 正则表达式并不是Python的一部分. 正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大. 得益于这一点 ...

随机推荐

  1. Java并发编程原理与实战三十六:阻塞队列&消息队列

    一.阻塞队列 1.阻塞队列BlockingQueue ---->可以理解成生产者消费者的模式---->消费者要等待到生产者生产出来产品.---->而非阻塞队列ConcurrentLi ...

  2. SQL - 查询某一字段值相同而另一字段值最大的记录

    有时需要以某一字段作为分组,筛选每一组的另一字段值最大(或最小)的记录.例如,有如下表 app,存储了 app 的 ID.名称.版本号等信息.现在要筛选出每个 app 版本最大的记录. 方法一 SEL ...

  3. 【CodeForces】961 G. Partitions 斯特林数

    [题目]G. Partitions [题意]n个数$w_i$,每个非空子集S的价值是$W(S)=|S|\sum_{i\in S}w_i$,一种划分方案的价值是所有非空子集的价值和,求所有划分成k个非空 ...

  4. JS设计模式——10.门面模式

    门面模式 这是一种组织性的模式,它可以用来修改类和对象的接口,使其更便于使用.它可以让程序员过得更轻松,使他们的代码变得更容易管理. 门面模式有两个作用: 简化类的接口 消除与使用她的客户代码之间的耦 ...

  5. 最小生成树 kuangbin专题最后一个题

    题目链接:https://cn.vjudge.net/contest/66965#problem/N 注释:这道题需要用krustra,用prim的话可能会超时.并且在计算距离的时候要尽量减少步骤,具 ...

  6. 20155303 2016-2017-2 《Java程序设计》第十周学习总结

    20155303 2016-2017-2 <Java程序设计>第十周学习总结 目录 学习内容总结 网络编程 数据库 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考 ...

  7. plsql链接数据库配置

    一. 目录结构 D:\install\PLSQL        |-- instantclient_11_2            |-- tnsnames.ora        |-- PLSQL ...

  8. 【杂谈】需要mark的一些东西

    https://riteme.github.io/blog/2017-10-28/oi-coding-guidelines.html https://www.luogu.org/blog/34238/ ...

  9. Linux多线程的使用一:互斥锁

    多线程经常会在Linux的开发中用到,我想把平时的使用和思考记录下来,一是给自己做个备忘,二是分享给可能会用到的人. POSIX标准下互斥锁是pthread_mutex_t,与之相关的函数有: 1 i ...

  10. C#中HttpWebRequest的GetRequestStream执行的效率太低,甚至偶尔死掉

    为了提高httpwebrequest的执行效率,查到了一些如下设置 request.ServicePoint.Expect100Continue = false; request.ServicePoi ...