Bagging算法:

将训练数据集进行N次Bootstrap采样得到N个训练数据子集,对每个子集使用相同的算法分别建立决策树,最终的分类(或回归)结果是N个决策树的结果的多数投票(或平均)。

其中,Bootstrap即为有放回的采样,利用有限的样本资料经由多次重复抽样,重新建立起足以代表母体样本分布之新样本。

随机森林:

随机森林是基于Bagging策略的修改算法,样本的选取采用Bootstrap采样,而属性集合也采用Bootstrap采样(不同之处)。

传统决策树在选择划分属性时是在当前结点的属性集合中选择一个最优属性;而在RF中,对每个样本构架决策树时,其每个结点,先从该结点的属性集合中随机选择一个包含k个属性的子集,然后再从这个子集中选择一个最优属性用于划分.。

决策树算法(Bagging与随机森林)的更多相关文章

  1. 机器学习回顾篇(12):集成学习之Bagging与随机森林

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...

  2. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  3. 机器学习总结(二)bagging与随机森林

    一:Bagging与随机森林 与Boosting族算法不同的是,Bagging和随机森林的个体学习器之间不存在强的依赖关系,可同时生成并行化的方法. Bagging算法 bagging的算法过程如下: ...

  4. Bagging与随机森林(RF)算法原理总结

    Bagging与随机森林算法原理总结 在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没 ...

  5. 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)

    本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...

  6. 机器学习——Bagging与随机森林算法及其变种

    Bagging算法:  凡解:给定M个数据集,有放回的随机抽取M个数据,假设如此抽取3组,3组数据一定是有重复的,所以先去重.去重后得到3组数据,每组数据量分别是s1,s2,s3,然后三组分别训练组合 ...

  7. Bagging之随机森林

    随机森林(Random Forest)是一种Bagging(Bootstrap Aggregating)集成算法,在样本随机(样本扰动)的基础上,进一步运用特征随机(属性扰动)的机制,得到比一般的Ba ...

  8. bootstrap && bagging && 决策树 && 随机森林

    看了一篇介绍这几个概念的文章,整理一点点笔记在这里,原文链接: https://machinelearningmastery.com/bagging-and-random-forest-ensembl ...

  9. 机器学习相关知识整理系列之二:Bagging及随机森林

    1. Bagging的策略 从样本集中重采样(有放回)选出\(n\)个样本,定义子样本集为\(D\): 基于子样本集\(D\),所有属性上建立分类器,(ID3,C4.5,CART,SVM等): 重复以 ...

随机推荐

  1. (一)利用 mdb 调试获取 nvlist_t 中 nvpair_t(name/value) 对

    服务器:192.168.2.122 root@2236:~# mdb -k> ::spaADDR                 STATE NAME                       ...

  2. [转]ROS(Robot Operating System)常用环境变量介绍

    本文简单介绍ROS系统中常用的环境变量用途及设置方式.ROS系统环境中除了必须配置的环境变量以外,其他的也是十分有用,通过修改变量路径,可以设置ROS系统中log文件存放路径,单元测试结果存放路径等. ...

  3. 2015.07.15——prime素数

    prime素数 1.素数也叫质数,定义是一个数只能被1和它自身整除. 素数从2开始,0,1都不是素数. 2.素数的判断(C++) 3.给定某个数,求小于这个数的所有素数 2.素数的判断(C++) bo ...

  4. p,br,hn,b,i,u,s,sup,sub标签

    <!--   -->注释 <p></p>段落标签 <br />换行标签 <h1></h1> 字体标签  最大 <h6> ...

  5. EPC摘抄

    S6a MME – HSS 完成用户位置信息的交换和用户签约信息的管理,传送控制面信息 Diameter MME:主要负责信令处理及移动性管理,功能包括:NAS信令及其安全:跟踪区域(Tracking ...

  6. sqlserver中查询存储过程中的字符串

    select name from sysobjects o, syscomments s where o.id = s.id and text like '%querytext%' and o.xty ...

  7. asp.net mvc 本地化 默认的错误提示

    System.ComponentModel.DataAnnotations 给我们提供了一些特性来直接对model的属性进行验证和约束, 同时也提供了 ErrorMessageResourceName ...

  8. 下一代Android打包工具,100个渠道包只需要10秒钟 https://github.com/mcxiaoke

    https://github.com/mcxiaoke/packer-ng-plugin https://github.com/Meituan-Dianping/walle https://githu ...

  9. 网络协议之TCP

    前言 近年来,随着信息技术的不断发展,各行各业也掀起了信息化浪潮,为了留住用户和吸引用户,各个企业力求为用户提供更好的信息服务,这也导致WEB性能优化成为了一个热点.据分析,网站速度越快,用户的黏性. ...

  10. 微信 JS API 支付教程

    最近一个项目中用到了微信开发,之前没有做过支付相关的东西,算是拿这个来练练手,刚开始接触支付时候很懵逼,加上微信支付开发文档本来就讲得不清楚,我是彻底蒙圈了,参考了很多代码之后,算是有一点思路了. 用 ...