前面讲过语法的解析之后,代码生成方面就简单很多了。虽然myc是一个简单的示例编译器,但是它还是在解析的过程中生成了一个小的语法树,这个语法树将会用在生成exe可执行文件和il源码的过程中。

编译器在解析时,使用emit类来产生中间的语法树,语法树的数据结构和操作方法在iasm这个类型里完成,源程序的语法解析完毕后,Exe和Asm两个类分别遍历生成的语法树产生最终的代码。

我们来看几个代码的例子,下表的函数 Parser.program 里,在函数开始和结束的地方分别调用了 prolog 和 epilog 两个函数,这两个函数的目的就是在语法解析的前后执行一些准备和扫尾工作。如在编译过程的开始阶段,根据.net assembly的要求创建好模块(module)和类(class),虽然c语言是一个面向过程的语言,但是在.net是一个面向对象的环境,所有的代码都应该保存在一个类里。

public void program()
{
prolog();
while (tok.NotEOF())
{
outerDecl();
}
if (Io.genexe && !mainseen)
io.Abort("Generating executable with no main entrypoint");
epilog();
} void prolog()
{
emit = new Emit(io);
emit.BeginModule(); // need assembly module
emit.BeginClass();
}

而在emit里,BeginModule和BeginClass这两个函数的代码如下:

public void BeginModule()
{
// 委托给Exe类来创建这个module,虽然在.net里,一个assembly可以由
// 多个module组成,但是在C程序里,只要一个module就足够了,因此
// 下面的代码并没有在生成IL源码的时候产生module。
exe.BeginModule(io.GetInputFilename());
} public void BeginClass()
{
// 委托给Exe类来创建class,再进一步跟踪代码的时候,会发现它其实
// 是根据反射技术来创建类型的。
exe.BeginClass(Io.GetClassname(), TypeAttributes.Public);
// 如果在执行程序的命令行里,启用了生成源码的开关,那么
// 将会输出IL class的源码定义。
if (Io.genlist)
io.Out(".class " + Io.GetClassname() + "{\r\n");
}

.NET里,可以使用反射技术来生成assembly、类型和函数,下表就是Exe类的BeginModule函数的源码:

public void BeginModule(string ifile)
{
// .net的动态assembly创建功能,要求跟appdomain绑定
appdomain = System.Threading.Thread.GetDomain();
appname = getAssemblyName(filename);
// 调用AppDomain.DefineDynamiceAssembly创建一个Assembly,以这个为
// 起点,可以创建类型,创建函数并执行。实际上,.net上的IronPython等
// 动态语言的实现就非常依赖这个技术。
appbuild = appdomain.DefineDynamicAssembly(appname,
AssemblyBuilderAccess.Save,
Io.genpath);
// 在.net里,所有的代码实际上都应该保存在一个module里。
emodule = appbuild.DefineDynamicModule(
filename+"_module",
Io.GetOutputFilename(),
Io.gendebug);
Guid g = System.Guid.Empty;
if (Io.gendebug)
srcdoc = emodule.DefineDocument(ifile, g, g, g);
}

准备工作做好了以后,就可以生成语法树了,编译器在解析语法的过程当中,不停的往语法树里添加元素,如在编译函数的过程中,以处理while循环为例(其中一个调用路径是:program -> outerDecl -> declFunc -> blockOuter -> fcWhile)

void fcWhile()
{
// 在一般的il或者汇编语言里,循环和判断语句一般都是在不同路径的入口
// 出定义好标签(label),再通过判断条件的方式跳转到指定的label实现的
String label1 = newLabel();
String label2 = newLabel(); // 记录当前源码的位置,以便生成IL源码的时候可以把源代码和IL代码对照生成
CommentHolder(); /* mark the position in insn stream */
// 一般来说,循环语句至少有两个分支代码块,一个是继续循环的代码块,
// 一个是跳出循环的代码块,看后面的代码,这个label是循环中执行的代码块
// 开始的地方,以便满足条件的时候跳到开头继续执行
emit.Label(label1);
tok.scan();
// 做一些错误判断
if (tok.getFirstChar() != '(')
io.Abort("Expected '('"); // 处理循环条件的判断语句相关代码
boolExpr();
CommentFillPreTok();
// 跳出循环的label
emit.Branch("brfalse", label2); // 循环内部的代码块,进入blockInner进行循环里面的编译
blockInner(label2, label1); /* outer label, top of loop */
// 如果满足循环条件,跳转到代码块开头继续执行
emit.Branch("br", label1); // 循环结束,跳出循环的地方
emit.Label(label2);
}

而在emit类型里,各个方法只是将解析出来的语法元素添加到语法树里,语法树的节点、数据结构和操作方法都在IAsm这个类里定义,如下表是 Branch 的源码:

public void Branch(String s, String lname)
{ // this is the branch source
NextInsn();
// 往语法树里添加一个类别为 Branch 的元素
icur.setIType(IAsm.I_BRANCH);
// 指令名称
icur.setInsn(s);
// 指令参数
icur.setLabel(lname);
}

当程序编译完成后,Exe类和Asm类则分别遍历语法树生成最终的结果,在myc编译器的源码里,Parser.declFunc函数通过调用Emit.IL函数来完成程序的生成:

// 因为C程序大部分都是由函数组成的,而且函数使用到的变量或者其他函数,
// 都必须在函数之前定义,所以只需要在解析函数的时候实时生成代码即可
void declFunc(Var e)
{
#if DEBUG
Console.WriteLine("declFunc token=["+tok+"]\n");
#endif
CommentHolder(); // start new comment
// 记录解析出来的函数名
e.setName(tok.getValue()); /* value is the function name */
// 如果函数名是main,则设置一个标识位 - mainseen为true
// 在外层的函数里,会通过判断这个标志来确定程序是否有语义错误
if (e.getName().Equals("main"))
{
if (Io.gendll)
io.Abort("Using main entrypoint when generating a DLL");
mainseen = true;
}
// 函数名也是一个全局变量,放到全局变量表里,以便做语义分析
// 例如要调用的函数之前没有定义,则应该报错,在后文我们将
// 看到语义方面的处理
staticvar.add(e); /* add function name to static VarList */
paramvar = paramList(); // track current param list
e.setParams(paramvar); // and set it in func var
// 记录函数里面定义的局部变量
localvar = new VarList(); // track new local parameters
CommentFillPreTok(); // 开始生成函数的prolog,例如参数传递,this对象等
emit.FuncBegin(e);
if (tok.getFirstChar() != '{')
io.Abort("Expected ‘{'");
// 递归分析函数里面的源码
blockOuter(null, null);
emit.FuncEnd(); // 解析完整个函数后,执行代码生成操作
emit.IL();
// 如果需要生成IL源码,则调用LIST函数生成IL源码
if (Io.genlist)
emit.LIST();
emit.Finish();
}

而emit.IL函数就是用Exe类型遍历整个语法树,生成结果程序:

public void IL()
{
IAsm a = iroot;
IAsm p; // 循环遍历整个语法树
while (a != null)
{
// 根据语法树里各个节点的类型来执行对应的操作
switch (a.getIType())
{
case IAsm.I_INSN:
exe.Insn(a);
break;
case IAsm.I_LABEL:
exe.Label(a);
break;
case IAsm.I_BRANCH:
exe.Branch(a);
break;
// 省略一些代码
default:
io.Abort("Unhandled instruction type " + a.getIType());
break;
}
p = a;
a = a.getNext();
}
}

而Exe类型执行真正的代码生成,如前面IL函数,在碰到I_BRANCH类型的节点时,调用Exe.Branch函数在动态Assembly (DynamicAssemby) 里生成代码:

public void Branch(IAsm a)
{
Object o = opcodehash[a.getInsn()];
if (o == null)
Io.ICE("Instruction branch opcode (" + a.getInsn() + ") not found in hash”);
// 使用 ILGenerator 类生成跳转IL指令。
il.Emit((OpCode) o, (Label) getILLabel(a));
}

而Asm类也采用类似的方法生成IL源码。

最后,myc编译器里也有一些语义方面的处理,如前面讲到的函数调用时,如果被调用的函数没有定义的话,应该抛出异常的情况,在Parser.statement(即编译实际的C语句的函数)中就有所体现

void statement()
{
Var e;
String vname = tok.getValue(); CommentHolder(); /* mark the position in insn stream */
switch (io.getNextChar())
{
case '(': /* this is a function call */
// 省略一些语法处理方面的代码
tok.scan(); /* move to next token */
// 下面这一行即在生成函数调用代码之前,在全局变量列表里
// 查找要调用的函数是否已经定义了,如果没有定义,则应该报告此错误
e = staticvar.FindByName(vname); /* find the symbol (e cannot be null) */
emit.Call(e); // 省略后面的代码
}
if (tok.getFirstChar() != ';')
io.Abort("Expected ';'");
tok.scan();
}

MYC编译器源码之代码生成的更多相关文章

  1. MYC编译器源码之词法分析

    前文  .NET框架源码解读之MYC编译器 和 MYC编译器源码分析之程序入口 分别讲解了 SSCLI 里示例编译器的架构和程序入口,本文接着分析它的词法分析部分的代码. 词法解析的工作都由Tok类处 ...

  2. MYC编译器源码之语法分析

    MyC编译器采用自顶向下的方法进行语法解析,这种语法解析方式,一般是从最左边的Token开始,然后自顶向下看哪一条语法规则可能包含这个Token,如果包含这个Token,则自左向右根据这条语法规则逐一 ...

  3. MYC编译器源码分析之程序入口

    前文.NET框架源码解读之MYC编译器讲了MyC编译器的架构,整个编译器是用C#语言写的,上图列出了MyC编译器编译一个C源文件的过程,编译主路径如下: 首先是入口Main函数用来解析命令行参数,读取 ...

  4. TypeScript 编译器源码研究(一)

    TypeScript (以下简称 TS)是一个非常强大的语言,其编译器源码超过 10000 行. 源码在 Github 可以找到:https://github.com/Microsoft/TypeSc ...

  5. .NET框架源码解读之MYC编译器

    在SSCLI里附带了两个示例编译器源码,用来演示CLR整个架构的弹性,一个是简化版的lisp编译器,一个是简化版的C编译器.lisp在国内用的少,因此这里我们主要看看C编译器的源码,源码位置是:\ss ...

  6. TypeScript 源码详细解读(1)总览

    TypeScript 由微软在 2012 年 10 月首发,经过几年的发展,已经成为国内外很多前端团队的首选编程语言.前端三大框架中的 Angular 和 Vue 3 也都改用了 TypeScript ...

  7. laravel源码解析

    本专栏系列文章已经收录到 GitBooklaravel源码解析 Laravel Passport——OAuth2 API 认证系统源码解析(下)laravel源码解析 Laravel Passport ...

  8. .NET框架源码解读之SSCLI编译过程简介

    前文演示了编译SSCLI最简便的方法(在Windows下): 在“Visual Studio 2005 Command Prompt”下,进入SSCLI的根目录: 运行 env.bat 脚本准备环境: ...

  9. Vue 源码解读(10)—— 编译器 之 生成渲染函数

    前言 这篇文章是 Vue 编译器的最后一部分,前两部分分别是:Vue 源码解读(8)-- 编译器 之 解析.Vue 源码解读(9)-- 编译器 之 优化. 从 HTML 模版字符串开始,解析所有标签以 ...

随机推荐

  1. python的进程间的数据交互

    #先来看下如何实现多进程 # multiprocessing 这个是python的多进程的模块,我们会用到这个模块的很多方法 from multiprocessing import Process i ...

  2. MongoDB的数据类型(四)

    JSON JSON是一种简单的数据表示方式,它易于理解.易于解析.易于记忆.但从另一方面来说,因为只有null.布尔.数字.字符串.数组和对象这几种数据类型,所以JSON有一定局限性.例如,JSON没 ...

  3. CookiesHelper

    /// <summary> ///CookiesHelper 的摘要说明 /// </summary> public class CookiesHelper { public ...

  4. PAT 1084 外观数列(20)(代码+思路+推荐测试用例)

    1084 外观数列(20 分) 外观数列是指具有以下特点的整数序列: d, d1, d111, d113, d11231, d112213111, ... 它从不等于 1 的数字 d 开始,序列的第 ...

  5. linux下给php安装memcached及memcache扩展(转)

    http://kimi.it/257.html (另外的方法)linux安装memcached及memcache扩展一.安装libevent函数库下载地址:http://libevent.org默认被 ...

  6. Flask源码剖析详解

    1. 前言 本文将基于flask 0.1版本(git checkout 8605cc3)来分析flask的实现,试图理清flask中的一些概念,加深读者对flask的理解,提高对flask的认识.从而 ...

  7. Ubuntu部分命令的使用简介

    1.查看USB设备 lsusb #查看系统中的usb设备 lsusb –v  #查看详细的usb设备信息 2.ubuntu mount u盘 第一步:查看U盘信息 sudo fdisk -l 得到类似 ...

  8. 使用PrintWriter out=response.getWriter();输出script脚本时乱码解决

    使用PrintWriter out=response.getWriter();输出script脚本时乱码解决 最近遇到了一个奇怪的事情,仅仅用out.print("<script ty ...

  9. 2018.09.17 atcoder Digit Sum(数论)

    传送门 数论好题啊. 首先对于b<=sqrt(n)b<=sqrt(n)b<=sqrt(n)的情况直接枚举b判断一下就行了. 下面谈一谈如何解决b>sqrt(n)b>sqr ...

  10. 2018.07.27 bzoj4695: 最假女选手(线段树)

    传送门 线段树好题 支持区间加,区间取min" role="presentation" style="position: relative;"> ...