R_Studio(学生成绩)使用主成分分析实现属性规约
对11_1_4.csv成绩表进行主成分分析处理
setwd('D:\\data') list.files() #读取数据
dat=read.csv(file="11_1_4.csv",header=TRUE)
dat=dat[,-c(1,2,10,11)] #主成分分析
PCA=princomp(dat,cor=F)
names(PCA)#查看输出项 (PCA$sdev)^2#主成分特征根
summary(PCA)#主成分贡献率
PCA$loadings#主成分载荷
PCA$scores#主成分得分
Gary.R
> summary(PCA)#主成分贡献率
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
Standard deviation 21.923097 13.877129 11.2585833 9.08290162 7.12019143 5.87691397 5.25241336 #主成分的标准差
Proportion of Variance 0.482904 0.193489 0.1273575 0.08289078 0.05093782 0.03470209 0.02771882 #方差的贡献率
Cumulative Proportion 0.482904 0.676393 0.8037505 0.88664127 0.93757908 0.97228118 1.00000000 #方差的累积贡献率
> PCA$loadings#主成分载荷 Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
JAVA程序设计 0.236 0.163 0.297 0.909
电子商务技术 0.623 -0.756 0.124 0.118
计算机维护与维修 0.104 0.190 -0.133 0.960
计算机组成原理 0.470 0.338 0.208 -0.306 -0.719
数据库系统原理 0.365 0.314 0.335 0.761 0.131 -0.234
算法设计与分析 0.372 0.153 -0.894 0.110 -0.105 -0.126
大学英语A_4 0.239 0.393 0.155 -0.553 0.572 -0.287 -0.221 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Proportion Var 0.143 0.143 0.143 0.143 0.143 0.143 0.143
Cumulative Var 0.143 0.286 0.429 0.571 0.714 0.857 1.000
> PCA$scores#主成分得分
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
[1,] 33.3196037 17.6874355 -0.25422380 -11.2669060 4.2917495 -1.7364204 4.97518007
[2,] 31.1801767 14.1593983 -4.47470827 -7.0283584 6.4786703 -5.8908663 7.45630606
[3,] 16.0593623 4.1733395 4.73087356 3.8211303 5.0571100 -2.4575435 3.28774257
[4,] 18.4599795 6.8838756 -5.17888938 -3.5337153 -3.5324890 9.0664813 -10.53284043
[5,] 22.6257727 -5.2588625 9.25342354 -0.7271976 9.8075163 8.4440318 -2.74254542
[6,] 18.4583765 0.3841284 -5.83949272 -8.1471985 -13.7079196 -6.2410719 -3.88663198
[7,] 20.7765859 13.6381355 -1.96535180 7.0825406 11.4998414 3.8088176 -6.24709551
[8,] 22.4055982 1.2572326 -4.52725913 8.5461387 -5.8650063 3.1370173 5.43043952
[9,] 10.6507844 10.4129351 15.42304832 4.4685204 1.1673139 8.1402877 -9.46484450
[10,] 17.1639629 -2.9525391 -10.01258904 -25.4490785 -5.4754708 -13.5277187 -7.95516018
[11,] 17.7945634 8.4024604 -0.35035882 2.3099044 -10.0253564 6.9582191 2.35849100
[12,] 12.8598877 -0.5588604 12.91817330 -2.2976186 5.7661594 0.3122876 1.63729804
[13,] 17.8084340 -3.0194490 -6.51371177 2.1379239 -4.3093249 -0.2923455 -2.14479586
[14,] 10.4585027 1.0417386 -19.73650352 14.2034399 1.8029565 6.4274103 -8.10728416
[15,] 10.3192625 -4.8219566 -3.60217599 -4.0807410 9.1303336 2.1788406 -0.47648506
[16,] 19.4722336 -9.0230062 13.96055565 -3.0505762 16.4767485 -0.0768518 1.97413948
[17,] 12.4466032 3.6624606 11.86842261 -2.2940459 -5.3363913 2.9385003 12.01728038
[18,] 10.9412050 -5.2512180 12.77385227 0.1711016 5.8379586 1.8466416 -7.84034045
[19,] 20.2156694 -11.9257596 -4.89824057 4.2539217 1.2212099 -1.3598156 0.69586378
[20,] 7.5757204 1.4629122 12.45201823 1.3380320 -11.4475596 -3.0560369 -0.33679014
[21,] 2.7560708 9.2670628 12.12499946 8.2058762 -6.6679381 -1.8767783 1.75044570
[22,] 6.9386608 21.9442175 16.71159245 2.4286736 -0.8955840 -6.6829971 -4.72743757
[23,] -9.9243741 0.4757100 0.01573284 1.4254642 2.4706595 -3.8905899 2.61108720
[24,] 6.5950893 3.7321278 -8.91241929 -0.5066062 6.3637581 1.2706868 1.10666607
[25,] 16.2275862 -4.7775620 -13.76590352 -22.8140031 5.2334105 9.4658474 3.59374787
[26,] -1.6370774 16.7224036 11.47807300 1.3839942 0.1871615 -3.8104935 -2.65749127
[27,] -4.9984010 6.7262848 9.33017015 9.4159721 -11.9826050 -1.9271300 -2.70926180
[28,] -0.9466044 -4.9963382 -13.44043198 6.8435895 7.0608288 -2.0568204 -6.36663646
[29,] -6.9405262 9.3086749 -4.25783374 13.8646433 0.9253015 -12.7755734 -0.51105509
[30,] 1.7219892 -5.6298414 -10.69930010 13.6120593 -5.2090180 -10.0628742 -4.78383632
[31,] -0.3541851 12.2312177 -6.08951913 10.4920885 -7.2794460 3.1028452 4.27513314
[32,] -4.3581531 -5.9643460 -7.16475122 6.4932550 -5.1895961 -1.7878238 2.16402149
[33,] -14.4453722 -0.1044177 1.61962685 9.0343576 -2.1145786 7.1296350 6.88736228
[34,] -3.8559156 -20.4106594 2.79158832 0.3726180 -4.4280421 -0.6170102 4.28772644
[35,] 13.6221594 -7.3733618 -4.65438509 -6.9531488 -10.0671883 -0.5898709 -0.36369030
[36,] -14.2113823 -16.6100486 9.07203345 -13.4515467 -2.0797826 -3.1567749 2.94481184
[37,] -10.3241338 -21.8739290 -0.25448952 -4.2178114 -5.8253442 -2.2815638 2.57099401
[38,] -1.6878990 -13.9744770 -32.25639847 1.7264204 -6.8524217 11.0633408 4.89836794
[39,] -21.9957957 -24.0405721 22.38147318 12.4602238 0.9192234 7.6823693 0.90812105
[40,] -27.3899348 -15.4321304 13.48446066 5.0113346 -2.4836177 -4.2459026 6.84884606
[41,] -36.8582514 -10.8359097 4.53814047 -4.9203118 12.2050066 -4.2598492 -1.97133591
[42,] -29.1632178 -5.8974902 17.50675815 -13.0108622 -1.3726696 7.3525642 -1.22636356
[43,] -39.0671787 22.1658349 -3.46728792 -2.2345130 5.9431736 -8.7253538 -0.08618077
[44,] -13.5103452 -28.6644930 -6.58252140 -11.1545147 2.1688582 -4.5438992 0.97442827
[45,] -52.4375907 51.4437648 -10.05342584 -9.6192156 1.9129401 5.2524403 9.21448312
[46,] -31.0312852 -12.0406147 -21.53204798 15.8935480 14.8361158 -4.9785873 2.95657858
[47,] -73.7162166 4.2544914 -3.95079643 -10.2388023 -6.6166558 7.3302988 -12.68745922
绘制各个科目主成分碎石图
screeplot(PCA,type="lines")
R_Studio(学生成绩)使用主成分分析实现属性规约的更多相关文章
- R_Studio(学生成绩)对数据进行属性构造处理
对“Gary.csv”中数据进行进行属性构造处理,增加“总成绩”属性 Gary.csv setwd('D:\\data') list.files() #数据读取 dat=read.csv(file=& ...
- R_Studio(学生成绩)使用cbind()函数对多个学期成绩进行集成
“Gary1.csv”.“Gary2.csv”.“Gary3.csv”中保存了一个班级学生三个学期的成绩 对三个学期中的成绩数据进行集成并重新计算综合成绩和排名,并按排名顺序排布(学号9位数11130 ...
- R_Studio(学生成绩)对数据缺失值md.pattern()、异常值分析(箱线图)
我们发现这张Gary.csv表格存在学生成绩不完全的(五十三名学生,三名学生存在成绩不完整.共四个不完整成绩) 79号大学语文.高等数学 96号中国近代史纲要 65号大学体育 (1)NA表示数据集中的 ...
- R_Studio(学生成绩)对两个班级学生成绩进行集合,重新计算学生综合测评成绩并对学生按综合测评成绩进行排名
对成绩表"11_1_1.csv" "11_2_1.csv"进行集成,并重新计算4门课程的平均分为综合测评,增加“排名”属性,并按排名排序 "11_1_ ...
- R_Studio(学生成绩)数据相关性分析
对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r ...
- R_Studio(学生成绩)对数值型数据进行统计量分析
对“Gary.csv”中的成绩数据进行统计量分析 基础数据分析 均值 中位数 极差 标准差 变异系数 1/4分位数 3/4分位数 四分位间距... ...分析 setwd('D:\\data' ...
- R_Studio(学生成绩)绘制频率分布直方图、分布饼图、折线比较图
对“Gary.csv”中的成绩数据进行分布分析 (1)按0-59,60-69,70-79,80-89,90-100分组绘制高级语言程序设计成绩的频率分布直方图. (2)按0-59,60-69,70-7 ...
- 【转】 [C/OC的那点事儿]NSMutableArray排序的三种实现(依赖学生成绩管理系统).
原文网址:http://blog.csdn.net/ministarler/article/details/17018839 c语言实现的学生成绩管理系统是面向过程的,而OC实现的学生成绩管理系统则是 ...
- Day_11【集合】扩展案例1_遍历打印学生信息,获取学生成绩的最高分,获取成绩最高的学员,获取学生成绩的平均值,获取不及格的学员数量
分析以下需求,并用代码实现: 1.按照以下描述完成类的定义 学生类 属性: 姓名name 年龄age 成绩score 行为: 吃饭eat() study(String content)(content ...
随机推荐
- Codeforces 1196E. Connected Component on a Chessboard
传送门 注意到棋盘可以看成无限大的,那么只要考虑如何构造一个尽可能合法的情况 不妨假设需要的白色格子比黑色格子少 那么容易发现最好的情况之一就是白色排一排然后中间黑的先连起来,剩下黑色的再全部填白色周 ...
- redis 学习(6)-- 集合类型
redis 学习(6)-- 集合类型 set 结构 无序 无重复 集合间操作 set 集合内操作 命令 含义 sadd key memebr1 [member2...] 向集合中添加一个或多个成员 s ...
- 设置adb shell的环境变量
1.设置adb系统变量 adb D:\androidStudio\platform-tools;D:\androidStudio\tools 2.设置path系统变量 path D:\android ...
- O008、LVM类型的Storage Pool
参考https://www.cnblogs.com/CloudMan6/p/5277927.html LVM类型的Storage Pool 不仅一个文件可以分配给客户机作为虚拟磁盘,宿主机上 ...
- AGC009E Eternal Average
atc 神题orz 那个擦掉\(k\)个数然后写上一个平均值可以看成是\(k\)叉Huffman树的构造过程,每次选\(k\)个点合成一个新点,然后权值设为平均值.这些0和1都会在叶子的位置,同时每个 ...
- SSM处理 No 'Access-Control-Allow-Origin' header is present on the requested resource 问题
在开发中,前端同事调用后端同事写好的接口,在地址中是有效的,但在项目的ajax中,浏览器会报 "No 'Access-Control-Allow-Origin' header is pres ...
- React 长列表修改时避免全体渲染
<!DOCTYPE html> <html> <head> <meta charset="UTF-8" /> <script ...
- openCV3测试指南
本文来源于https://docs.opencv.org/3.4.1/db/df5/tutorial_linux_gcc_cmake.html 经测试整理后发布 上一节安装完成了openCV,这一节进 ...
- Hadoop网页监控配置
接之前的内容http://www.cnblogs.com/jourluohua/p/8734406.html 在之前那的内容中,仅实现了Hadoop的安装和运行,距离实际使用还有很远.现在先完成一个小 ...
- js 重要函数
1. Array.some some() 方法用于检测数组中的元素是否满足指定条件(函数提供) 如果有一个元素满足条件,则表达式返回true , 剩余的元素不会再执行检测.如果没有满足条件的元素,则返 ...