51nod 2589 快速讨伐
如果不考虑升级操作,只有买装备操作和打怪操作,那么首先一定要先买装备,然后可以打死1级的怪,这些怪被打死的时间只要在第一次买装备后面好了,因为现在总操作是\(n+\sum a_i\)个,所以这里的方案数为\(\binom{n-1+\sum_{i=1}a_i}{a_1}a_1!\).然后考虑买第二个装备,这个操作的位置显然在前面操作放完后的剩下的空位中的第一个,然后就有\(a_2\)个怪要打,方案为\(\binom{n-2+\sum_{i=2}a_2}{a_1}a_2!\),容易发现每考虑完\(i\),就剩下一个怪等级为\(i+1\)到\(n\)子问题,所以这个问题答案就是\(n\)个组合数相乘,具体来说是\(\prod_{i=1}^{n}\binom{n-i+\sum_{j=i}a_j}{a_i}a_i!\)
然后考虑有升级操作,那么买第\(i\)个装备就至少要升\(i\)次级,考虑dp,设\(f_{i,j}\)表示升\(i\)次级以及买\(j\)次装备的方案,显然要满足\(i\ge j\),转移就枚举现在升级还是买装备,如果买装备就要考虑这个等级的怪怎么打,也就是乘上一个类似于上面的组合数,就是从剩下的空位选\(a_j\)个打怪并考虑打怪顺序.答案为\(f_{n,n}\)
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=5000+10,M=N*N,mod=998244353;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
void ad(int &x,int y){x+=y,x-=x>=mod?mod:0;}
int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int ginv(int a){return fpow(a,mod-2);}
int n,tt,a[N],s[N],f[N][N];
int fac[M],iac[M];
int C(int a,int b){return b<0||a<b?0:1ll*fac[a]*iac[b]%mod*iac[a-b]%mod;}
int main()
{
n=rd();
tt=n+n;
for(int i=1;i<=n;++i)
{
a[i]=rd();
tt+=a[i],s[i]=s[i-1]+a[i];
}
fac[0]=1;
for(int i=1;i<=tt;++i) fac[i]=1ll*fac[i-1]*i%mod;
iac[tt]=ginv(fac[tt]);
for(int i=tt;i;--i) iac[i-1]=1ll*iac[i]*i%mod;
f[0][0]=1;
for(int i=0;i<=n;++i)
for(int j=0;j<=i;++j)
{
if(!f[i][j]) continue;
ad(f[i+1][j],f[i][j]);
if(j<i) ad(f[i][j+1],1ll*f[i][j]*C(tt-(i-m)-(j+1)-s[j],a[j+1])%mod*fac[a[j+1]]%mod);
}
printf("%d\n",f[n][n]);
return 0;
}
51nod 2589 快速讨伐的更多相关文章
- 【51nod】2589 快速讨伐
51nod 2589 快速讨伐 又是一道倒着推改变世界的题... 从后往前考虑,设\(dp[i][j]\)表示还有\(i\)个1和\(j\)个\(2\)没有填,那么填一个1的话直接转移过来 \(dp[ ...
- 51nod 1013快速幂 + 费马小定理
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 这是一个等比数列,所以先用求和公式,然后和3^(n+1)有关,有n ...
- 51nod 矩阵快速幂(模板题)
1113 矩阵快速幂 基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 给出一个N * N的矩阵,其中的元素均为正整数.求这个矩阵的M次方.由于M次方的计算结果太大 ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 51Nod 1004 n^n的末位数字(日常复习快速幂,莫名的有毒,卡mod值)
1004 n^n的末位数字 题目来源: Author Ignatius.L (Hdu 1061) 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给出一个整数N,输出 ...
- 51Nod 1046 A^B Mod C(日常复习快速幂)
1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...
- 51nod 1835 - 完全图 - [dp][组合数公式][快速幂]
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1835 基准时间限制:1 秒 空间限制:131072 KB ...
- 51Nod 快速傅里叶变换题集选刷
打开51Nod全部问题页面,在右边题目分类中找到快速傅里叶变换,然后按分值排序,就是本文的题目顺序. 1.大数乘法问题 这个……板子就算了吧. 2.美妙的序列问题 长度为n的排列,且满足从中间任意位置 ...
- 51nod 1013 3的幂的和 - 快速幂&除法取模
题目地址:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1013 Konwledge Point: 快速幂:https:/ ...
随机推荐
- 在oracle数据库里创建自增ID字段的步骤
CREATE TABLE ADVICE ( ID INT NOT NULL, ACTIVE NOT NULL, TYPE INT NOT NULL, MSG ) NOT NULL, ADVICE ) ...
- img控件的居中显示 ---js技术
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 异步上传&预览图片-不压缩图片
本例使用ajaxFileUpload异步上传预览图片 <bean id="multipartResolver" class="org.springframework ...
- C# 查看计算机端口使用状态
using System.Net.NetworkInformation; /// <summary> /// 获取第一个可用的端口号 /// </summary> /// &l ...
- javascript - 事件详解(阻止事件冒泡+阻止事件行为)
一.事件流 1.事件流 描述的是在页面中接受事件的顺序 2.事件冒泡 由最具体的元素接收,然后逐级向上传播至最不具体的元素的节点 (最具体 –> 最不具体) 3.事件捕获 最不具体的节点先接收事 ...
- nodejs之express中间件路由使用
1.express 中间件使用 /* * 中间件:就是匹配路由之前和匹配路由之后做的一系列操作 */ var express = require('express'); var app = new e ...
- OpenFlow/SDN 的缘起与发展
目录 文章目录 目录 从虚拟机动态迁移对大二层网络的需求说起 OpenFlow 起源 从 OpenFlow 扩展为 SDN OpenFlow 的应用场景 网络虚拟化 – FlowVisor 负载均衡 ...
- Python基本语法_运算符详解
目录 目录 前言 软件环境 身份运算符 算术运算符 比较运算符 位移运算符 自变运算符 位运算符 逻辑运算符 成员关系运算符 Python真值表 最后 前言 在前面的博文介绍了Python的数据结构之 ...
- vtkExampleWarpVector和vtkWarpScalar
vtkWarpVector : deform geometry with vector data vtkWarpVector is a filter that modifies point coord ...
- 去掉有序数组中的重复元素 c/c++
去掉有序数组中的重复元素: int RemoveDuplates(int A[], int nCnt) { ; ; , j = ; i < nCnt && j < nCnt ...