bzoj2669 [cqoi2012]局部极小值 状压DP+容斥
题目传送门
https://lydsy.com/JudgeOnline/problem.php?id=2669
题解
可以发现一个 \(4\times 7\) 的矩阵中,有局部最小值的点最多有 \(2\times 4 = 8\) 个,所以我们可以状压一下每个局部最小值的位置有没有被选。
从小到大填入每一个格子,那么如果一个点的周围有没有被填上的局部最小值,那么这个格子不可以被填。所以预处理一下每种状态下可以自由填多少格子,然后如果状态保持不变的话,就可以这样转移。
如果状态变化,就是说填了一个局部最小值的话,那么久直接加上当前状态的答案就可以了。
但是这样会有问题:被自由填的位置,可能会出现多余的局部最小值,也就说不该是局部最小值的地方出现了局部最小值——那么就直接容斥一下就好了,直接搜索一个各种合法状态,都 DP 一下。
这个 DP 的复杂度很显然是 \(O(nm \cdot 8 \cdot 2^8)\),但是搜索我就不太会算了。总之可以轻松的过掉。
#include<bits/stdc++.h>
#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back
template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;}
typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii;
template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
}
const int N = 4 * 7 + 7;
const int M = (1 << 8) + 7;
const int dx[] = {0, 1, 1, 1, 0, -1, -1, -1}, dy[] = {1, 1, 0, -1, -1, -1, 0, 1};
const int P = 12345678;
int n, m, pcnt, cnt, S, ans;
pii p[N];
int wy[M], dp[N][M];
char a[N][N], b[N][N], mk[5][8];
inline int smod(int x) { return x >= P ? x - P : x; }
inline void sadd(int &x, const int &y) { x += y; x >= P ? x -= P : x; }
inline int fpow(int x, int y) {
int ans = 1;
for (; y; y >>= 1, x = (ll)x * x % P) if (y & 1) ans = (ll)ans * x % P;
return ans;
}
inline void ycl() {
S = (1 << cnt) - 1;
memset(wy, 0, sizeof(wy));
for (int s = 0; s <= S; ++s) {
int &ans = wy[s];
memset(mk, 0, sizeof(mk));
for (int i = 1; i <= cnt; ++i) if (!((s >> (i - 1)) & 1)) {
int x = p[i].fi, y = p[i].se;
mk[x][y] = 1;
for (int i = 0; i < 9; ++i) {
int px = x + dx[i], py = y + dy[i];
if (px < 1 || px > n || py < 1 || py > m) continue;
mk[px][py] = 1;
}
}
for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) if (!mk[i][j]) ++ans;
}
}
inline void DP() {
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 0; i < n * m; ++i) {
for (int s = 0; s <= S; ++s) {
sadd(dp[i + 1][s], (ll)dp[i][s] * (wy[s] - i) % P);
for (int j = 1; j <= cnt; ++j) if (!((s >> (j - 1)) & 1))
sadd(dp[i + 1][s ^ (1 << (j - 1))], dp[i][s]);
}
}
}
inline void calc() {
cnt = 0;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j) if (b[i][j]) p[++cnt] = pii(i, j);
ycl();
DP();
if ((cnt - pcnt) & 1) sadd(ans, P - dp[n * m][S]);
else sadd(ans, dp[n * m][S]);
}
inline void dfs(int x, int y) {
if (x == n + 1) return calc();
if (y == m) dfs(x + 1, 1); else dfs(x, y + 1);
int flag = 1;
for (int i = 0; i < 9; ++i) {
int px = x + dx[i], py = y + dy[i];
if (px < 1 || px > n || py < 1 || py > m) continue;
if (b[px][py]) { flag = 0; break; }
}
if (a[x][y] || !flag) return;
b[x][y] = 1;
if (y == m) dfs(x + 1, 1); else dfs(x, y + 1);
b[x][y] = 0;
}
inline void work() {
for (int i = 1; i <= n; ++i) for (int j = 1; j <= m; ++j) if (a[i][j])
for (int k = 1; k <= n; ++k) for (int l = 1; l <= n; ++l) if (a[k][l])
if (abs(i - k) <= 1 && abs(j - l) <= 1 && (i != k || j != l)) return (void)puts("0");
memcpy(b, a, sizeof(a));
dfs(1, 1);
printf("%d\n", ans);
}
inline void init() {
read(n), read(m);
for (int i = 1; i <= n; ++i) {
scanf("%s", a[i] + 1);
for (int j = 1; j <= m; ++j) a[i][j] = a[i][j] == 'X', pcnt += a[i][j];
}
}
int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}
bzoj2669 [cqoi2012]局部极小值 状压DP+容斥的更多相关文章
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)
题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...
- codeforces 342D Xenia and Dominoes(状压dp+容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...
- BZOJ 2669 CQOI2012 局部极小值 状压dp+容斥原理
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2669 题意概述:实际上原题意很简洁了我就不写了吧.... 二话不说先观察一下性质,首先棋盘 ...
- 一本通 1783 矩阵填数 状压dp 容斥 计数
LINK:矩阵填数 刚看到题目的时候感觉是无从下手的. 可以看到有n<=2的点 两个矩形. 如果只有一个矩形 矩形外的方案数容易计算考虑 矩形内的 必须要存在x这个最大值 且所有值<=x. ...
- 【BZOJ-2669】局部极小值 状压DP + 容斥原理
2669: [cqoi2012]局部极小值 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 561 Solved: 293[Submit][Status ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- [清华集训2015 Day1]主旋律-[状压dp+容斥]
Description Solution f[i]表示状态i所代表的点构成的强连通图方案数. g[i]表示状态i所代表的的点形成奇数个强连通图的方案数-偶数个强连通图的方案数. g是用来容斥的. 先用 ...
- NOIp模拟赛 巨神兵(状压DP 容斥)
\(Description\) 给定\(n\)个点\(m\)条边的有向图,求有多少个边集的子集,构成的图没有环. \(n\leq17\). \(Solution\) 问题也等价于,用不同的边集构造DA ...
随机推荐
- PHP Timer 页面运行时间监测类
转至:http://blog.csdn.net/fdipzone/article/details/20160567 php Timer 页面运行时间监测类,可按不同key监测不同的运行时间 Timer ...
- 20180813-Java 重写(Override)与重载(Overload)
Java 重写(Override)与重载(Overload) class Animal{ public void move(){ System.out.println("动物可以移动&quo ...
- OC端代码
ViewController.m #import "ViewController.h"#import <Flutter/Flutter.h>#include " ...
- Vue子组件传递数据给父组件
子组件通过this.$emit(event,data)传递数据到父组件 以下是例子: father.vue 父组件 <template> <div> <child @ne ...
- Jmeter中if 控制器的使用
使用if控制器有两种方式:1.不勾选“interpret condition as variable expression”直接输入我们需要判断的表达式即可,判断表达式为真时,执行if控制器下的请求, ...
- Jmeter 上传下载文件
最近很多同学都在问jmeter上传.下载文件的脚本怎么做,要压测上传.下载文件的功能,脚本怎么做,网上查了都说的很含糊,这次呢,咱们就好好的把jmeter的上传下载文件好好缕缕,都整明白了,怎么个过程 ...
- CSS学习笔记2:选择器
标签选择器 1.选择要给样式的目标标签,所以叫做标签选择器,也叫元素选择器. 2.给所有相同标签,给相同样式. <!DOCTYPE html> <html lang="en ...
- sts测试流程
测试目的: 测试安全补丁打上了没 测试前提: 1.发货版本,user debug版本,相应安全补丁已合入,测试工具与安全补丁是对应的 2.selinux:Enable 3.连接ADB,stay awa ...
- html5_websql
var db = openDatabase('mydb', '1.0', 'Test DB', 2 * 1024 * 1024); var msg; db.transaction(function ...
- Java单链表
一.概述 二.主方法 //创建头结点 private HeroNode head = new HeroNode(-1,null,null); //计数器,用于id的自增 private static ...