HDU6415 Rikka with Nash Equilibrium

找规律 + 大数

由于规律会被取模破坏,所以用了java

找出规律的思路是:

对于一个n*m的矩阵构造,我先考虑n*1的构造,很容易知道它是n!种方法。然后对于n*2的矩阵构造,就是在n*1的矩阵中新加入n个元素的排列组合,当然这里面一定会有非法的情况。通过打表可以暴力的搜出5*5以内的答案,所以我就可以知道从n*1的矩阵扩展到n*2的矩阵中有多少种非法组合(n <= 5 只知道小数据)。同理对于n*2扩展到n*3以后到n*(m-1)扩展到n*m的正确方案数和每次剔除的方案数就可以得到(小数据暴力得到)。然后发现规律 每次正确合法方案数:非法方案数 = i :(n-1);i从2迭代到m就可以得到答案。

java版本:

//package acm;

import java.math.BigInteger;
import java.awt.Container;
import java.math.*;
import java.math.BigInteger;
import java.util.*; import org.omg.PortableServer.ID_ASSIGNMENT_POLICY_ID;
public class Main
{ public static void main(String[] args)
{
Scanner cin=new Scanner(System.in);
int t = cin.nextInt();
for(int i=;i<=t;i++)
{
int n = cin.nextInt();
int m = cin.nextInt();
BigInteger k = cin.nextBigInteger(); if(n==)
{
BigInteger ans = BigInteger.ONE;
for(int j=;j<=m;j++)
{
ans = ans.multiply(BigInteger.valueOf(j));
}
ans = ans.mod(k);
System.out.println(ans);
}
else {
BigInteger ans1 = BigInteger.ONE;
for(int j=;j<=n;j++)
{
ans1 = ans1.multiply(BigInteger.valueOf(j));
} //System.out.println(ans1);
for(int j=;j<=m;j++)
{
BigInteger tt = BigInteger.valueOf(j*n);
BigInteger temp = BigInteger.ONE;
for(int kk=;kk<n;kk++)
{
temp = temp.multiply(tt.subtract(BigInteger.valueOf(kk)));
}
ans1 = ans1.multiply(temp);
ans1 = ans1.multiply(BigInteger.valueOf(j)).divide(BigInteger.valueOf(j+n-)); }
ans1 = ans1.mod(k);
System.out.println(ans1);
}
}
cin.close();
}
}

这道题也可以用c++来通过对数进行拆分成质数的乘积来记录大数(因为保证了过程中除法都是整除)

c++版本:

#include <bits/stdc++.h>

using namespace std;

int cnt[],prime[],tag[];
void init(int n){
int cnt = ;
for(int i = ;i <= n;++i){
if(!tag[i]) prime[cnt++] = i;
for(int j = ;j < cnt && prime[j] * i <= n;++j){
tag[i*prime[j]] = ;
if(i % prime[j] == ) break;
}
}
}
vector<int> V[];
long long mod;
long long power(long long a,long long k){
long long ret = ;
while(k){
if(k & ) ret = ret * a % mod;
a = a * a % mod;
k >>= ;
}
return ret;
} int main()
{
init();
int T;
cin >> T;
for(int i = ;i < ;++i){
for(long long j = ;j * prime[i] <= ;++j){
V[prime[i]*j].push_back(i);
}
}
while(T--)
{
memset(cnt,,sizeof(cnt));
int n,m;
scanf("%d%d%lld",&n,&m,&mod);
for(int i = n*m;i > ;--i){
int siz = V[i].size();
int tmp = i;
for(int j = ;j < siz;++j){
while(tmp%prime[V[i][j]] == ) tmp /= prime[V[i][j]],cnt[V[i][j]]++;
}
}
for(int i = ;i <= m;++i){
int tmp = n-+i;
int siz = V[tmp].size();
for(int j = ;j < siz;++j){
while(tmp%prime[V[n-+i][j]] == ) tmp /= prime[V[n-+i][j]],cnt[V[n-+i][j]]--;
}
tmp = i;
siz = V[tmp].size(); for(int j = ;j < siz;++j){
while(tmp%prime[V[i][j]] == ) tmp /= prime[V[i][j]],cnt[V[i][j]]++;
}
}
long long ans = ;
for(int i = ;i < ;++i){
ans = ans * power(prime[i],cnt[i]) % mod;
}
cout << ans << endl;
}
return ;
}

HDU6415 Rikka with Nash Equilibrium的更多相关文章

  1. 杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  2. hdu6415 Rikka with Nash Equilibrium (DP)

    题目链接 Problem Description Nash Equilibrium is an important concept in game theory. Rikka and Yuta are ...

  3. hdu-6415 Rikka with Nash Equilibrium dp计数题

    http://acm.hdu.edu.cn/showproblem.php?pid=6415 题意:将1~n*m填入一个n*m矩阵 问只有一个顶点的构造方案. 顶点的定义是:某数同时是本行本列的最大值 ...

  4. 【杂题总汇】HDU2018多校赛第九场 Rikka with Nash Equilibrium

    [HDU2018多校赛第九场]Rikka with Nash Equilibrium 又是靠这样一道题擦边恰好和第两百名分数一样~愉快

  5. HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)

    Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K ...

  6. [hdoj6415 Rikka with Nash Equilibrium][dp]

    http://acm.hdu.edu.cn/showproblem.php?pid=6415 Rikka with Nash Equilibrium Time Limit: 10000/5000 MS ...

  7. HDU 6415 Rikka with Nash Equilibrium (计数DP)

    题意:给两个整数n,m,让你使用 1 ~ n*m的所有数,构造一个矩阵n*m的矩阵,此矩阵满足:只有一个元素在它的此行和此列中都是最大的,求有多种方式. 析:根据题意,可以知道那个元素一定是 n * ...

  8. 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...

  9. hdu6415 记忆化搜索或找规律

    Rikka with Nash Equilibrium Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Sub ...

随机推荐

  1. lvs三种负载均衡模式

    lvs模式 lvs nat模式 地址转换 nat模式 地址转发 ,数据全部集中在lvs处理,lvs压力大 lvs ip-tun模式 ip隧道 与nat模式差不多,差别有了隧道封装,轮询调度给后端服务器 ...

  2. Maven 修改jdk版本

    Maven 修改jdk版本方法1: <build> <plugins> <plugin> <groupId>org.apache.maven.plugi ...

  3. [Git] 013 远程仓库篇 第零话 使用前的一些配置

    0. 前言 本地仓库和 GitHub 上的远程仓库之间的传输是通过 "SSH" 加密的,所以使用前需要进行一些设置 这回的任务 设置"身份象征" 创建 &quo ...

  4. Java-集合第五篇Map集合

    1.什么是Map集合. Map用于保存具有映射关系的数据.key和value都可以是任意引用类型,但key不允许重复,即同一个Map的任何两个key通过equals方法比较总是返回false. 从Ja ...

  5. C++解析XML字符串

    项目交互遇到了需要VC++中解析XML字符串,故花了点时间了解了下VC++中解析XML的诸多方法主要包括三种:msxml(微软提供).markup.TinyXml. 开始花了点时间使用msxml3,虽 ...

  6. Spark-Core RDD概述

    一.什么是RDD 1.RDD(Resilient Distributed DataSet)弹性分布式数据集 2.是Spark中最基本的数据抽象 3.在代码中是一个抽象类,它代表一个弹性的.不可变的.可 ...

  7. Linux快速访问多个目录

    Linux下实现多个目录之间快速切换 dirs -v # 显示栈目录dirs -c # 清空栈目录 pushd # 加入当前目录pushd director   #  加入指定目录pushd +/-i ...

  8. js去掉输入框的前后空格及一些常用正则表达式

    去掉TextBox输入框两头的前后空格:onblur="this.value=this.value.replace(/^\s+|\s+$/g,'');" str为要去除空格的字符串 ...

  9. 项目常见bug

    Invalid prop: type check failed for prop "disabled". Expected Boolean, got String with val ...

  10. ubuntu移动分区,修改目录挂在点

    由于/tmp目录空间有点小,导致安装一个大软件的时候提示/tmp空间不足,最后通过创建新分区,并将新分区挂在到/tmp下,把/tmp空间扩大. 安装gparted 输入如下命令: sudo apt-g ...