[JZOJ5398]:Adore(状压DP+记忆化搜索)
题目描述
小$w$偶然间见到了一个$DAG$。
这个$DAG$有$m$层,第一层只有一个源点,最后一层只有一个汇点,剩下的每一层都有$k$个节点。
现在小$w$每次可以取反第$i(1<i<n-1)$层和第$i+1$层之间的连边。也就是把原本从$(i,k_1)$连到$(i+1,k_2)$的边,变成从$(i,k_2)$连到$(i+1,k_1)$。
请问他有多少种取反的方案,把从源点到汇点的路径数变成偶数条?
答案对$998244353$取模。
输入格式
一行两个整数$m,k$。
接下来$m-1$行,第一行和最后一行有$k$个整数$0$或$1$,剩下每行有$k^2$个整数$0$或$1$,第$(j-1)\times k+t$个整数表示$(i,j)$到$(i+1,t)$有没有边。
输出格式
一行一个整数表示答案。
样例
样例输入:
5 3
1 0 1
0 1 0 1 1 0 0 0 1
0 1 1 1 0 0 0 1 1
0 1 1
样例输出:
4
数据范围与提示
$20\%$的数据满足$n\leqslant 10,k\leqslant 2$。
$40\%$的数据满足$n\leqslant 10^3,k\leqslant 2$。
$60\%$的数据满足$m\leqslant 10^3,k\leqslant 5$。
$100\%$的数据满足$4\leqslant m\leqslant 10^4,k\leqslant 10$。
题解
发现$k$很小,考虑状压$DP$,设$dp[i][s]$表示第$i$行,能连边的点的状态为$s$的方案数。
转移用记忆化搜索即可,从后往前搜索。
时间复杂度:$\Theta(NK2^K)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
const int mod=998244353;
int M,K,S;
int Map[2][10001][11],a[11],g[1025];
long long dp[10001][1025];
int lowbit(int x){return x&-x;}
long long dfs(int x,int s)
{
if(dp[x][s]!=-1)return dp[x][s];
if(x==2)
{
dp[x][s]=1;
for(int i=1;i<=K;i++)dp[x][s]^=a[i]&((s&(1<<(i-1)))!=0);
}
else
{
int ls=0,rs=0;
for(int i=1;i<=K;i++)
{
ls|=g[Map[0][x-1][i]&s]<<(i-1);
rs|=g[Map[1][x-1][i]&s]<<(i-1);
}
dp[x][s]=(dfs(x-1,ls)+dfs(x-1,rs))%mod;
}
return dp[x][s];
}
int main()
{
memset(dp,-1,sizeof(dp));
scanf("%d%d",&M,&K);
for(int i=1;i<(1<<K);i++)g[i]=g[i-lowbit(i)]^1;
for(int i=1;i<=K;i++)scanf("%d",&a[i]);
for(int i=2;i<M-1;i++)
for(int j=1;j<=K;j++)
for(int k=1;k<=K;k++)
{
int x;scanf("%d",&x);
Map[0][i][j]|=x<<(k-1);
Map[1][i][k]|=x<<(j-1);
}
for(int i=1;i<=K;i++)
{
int x;
scanf("%d",&x);
S|=x<<(i-1);
}
printf("%lld",dfs(M-1,S));
return 0;
}
rp++
[JZOJ5398]:Adore(状压DP+记忆化搜索)的更多相关文章
- 状压DP+记忆化搜索 UVA 1252 Twenty Questions
题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...
- loj 1021(状压dp+记忆化搜索)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25887 题目大意:给定的一个某进制下的排列,问它的全排列有多少个能 ...
- loj 1018(状压dp+记忆化搜索)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25844 思路:首先预处理出点在同一直线上的所有的点集状态(dp[i ...
- UVa 10817 Headmaster's Headache (状压DP+记忆化搜索)
题意:一共有s(s ≤ 8)门课程,有m个在职教师,n个求职教师.每个教师有各自的工资要求,还有他能教授的课程,可以是一门或者多门. 要求在职教师不能辞退,问如何录用应聘者,才能使得每门课只少有两个老 ...
- UVa 1252 (状压DP + 记忆化搜索) Twenty Questions
题意: 有n个长为m的各不相同的二进制数(允许存在前导0),别人已经事先想好n个数中的一个数W,你要猜出这个数. 每次只可以询问该数的第K为是否为1. 问采用最优询问策略,则最少需要询问多少次能保证猜 ...
- UVa 10817 (状压DP + 记忆化搜索) Headmaster's Headache
题意: 一共有s(s ≤ 8)门课程,有m个在职教师,n个求职教师. 每个教师有各自的工资要求,还有他能教授的课程,可以是一门或者多门. 要求在职教师不能辞退,问如何录用应聘者,才能使得每门课只少有两 ...
- UVa 1252 Twenty Questions (状压DP+记忆化搜索)
题意:有n件物品,每件物品有m个特征,可以对特征进行询问,询问的结果是得知某个物体是否含有该特征,要把所有的物品区分出来(n个物品的特征都互不相同), 最小需要多少次询问? 析:我们假设心中想的那个物 ...
- UVA - 10817 Headmaster's Headache (状压dp+记忆化搜索)
题意:有M个已聘教师,N个候选老师,S个科目,已知每个老师的雇佣费和可教科目,已聘老师必须雇佣,要求每个科目至少两个老师教的情况下,最少的雇佣费用. 分析: 1.为让雇佣费尽可能少,雇佣的老师应教他所 ...
- 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索
题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...
随机推荐
- awk--基本操作
二:awk--将一行分为数个字段处理 PS:awk [option] '条件类型 {动作1} 条件类型{动作2} ...' filename PS: awk 'Pattern {action}' fi ...
- VUE项目中使用this.$forceUpdate()强制页面重新渲染
在使用Vue框架开发时,在函数中改变了页面中的某个值,在函数中查看是修改成功了,但在页面中没有及时刷新改变后的值,我是在使用多层v-for嵌套时出现这种问题的, 解决方法:运用 this.$force ...
- JS语法学习笔记-菜鸟教程
现在只需要<script></script>标签 javascript通常做法是放在<head>部分中,或者放在页面底部,这样可以把他们安置在同一位置,不会干扰页面 ...
- python3 调用zabbix API实现批量增加删除主机,主机各种监控项------实战
在以前的博客中谈到了利用zabbix接口来对主机进行批量的增删改查 这里在不用环境中实战遇到了不同问题,这里记录下来以便后续review 以下为实战中获取token的代码,在zabbix标准接口文档中 ...
- xml_SAX解析
(一)SAX解析 1.1 SAX解析 SAX:基于事件处理的机制 sax解析xml文件时,遇到根开始标签,根结束标签,开始解析文件,文件解析结束,字符内容,空白字符等都会触发各自的方法. 优点: 适合 ...
- On Java 8
On Java 8本书原作者为 [美] Bruce Eckel,即<Java 编程思想>的作者.本书是事实上的 <Java 编程思想>第五版.<Java 编程思想> ...
- 英国电信选择由 Canonical 开发的 Ubuntu OpenStack 作为云平台
英国电信(简称 BT,British Telecom)宣布,选择由 Canonical 开发的 Ubuntu OpenStack 作为云平台,该平台将有助于支持引入 5G 和光纤到户的连接. 作为 U ...
- selenium-Xpath使用方法
01:什么是Xpath Xpath是一门xml文档中查找信息的语言,Xpath可用来在xml文档中对元素和属性进行遍历,主流的浏览器都支持xpath,因为HTML页面在DOM中表示xhtml文档 xp ...
- springboot异常
异常如下: org.springframework.context.ApplicationContextException: Unable to start embedded container; n ...
- buuctf@easyre