数据不是很大,如果要转换为正常的那种建图方式的话,可以给点进行标号,用一个二维数组存这两条边相交的那个点的标号,方便处理。一定要注意不要同一个点使用不同的编号也不要不同的点使用同一个编号(这不是废话嘛)不展开。

想多说一下一种比较有意思的做法,就是把边看成点,把边权转化为点权。

这样的话,原本的最小环长就变成了一条路径上经过的所有点的点权之和啦。

大概,张这个样子吧:

边是没有权值的,它只表示连通性。

不过由于把边看成了点,所以处理有些特殊:

原本的$dis[i][j]$是指点$i$到点$j$所经过的边权之和的最小值,但边->点之后,就变成了点$i$到点$j$所经过的点权之和的最小值(含点$i$和点$j$),那么在转移的时候,原本的方程式$dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j])$就不能用,因为$dis[i][k]$和$dis[k][j]$都包含了点$k$的点权,所以要减去,应该写成这个样子:

$$dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]-pw[k]/*point-weight*/)$$

然后就用$floyd$求最小环就可以了

->$break$ $in$ $something$

简单说一下$floyd$求最小环,感觉就是做一遍$floyd$答案就是$dis[i][i]$。

但是不行啊,因为无法保证$dis[i][k]$和$dis[k][j]$表示的路是不一样的。

转移的时候是枚举$i$,$j$,$k$三重循环的嘛,就在每一次通过$k$转移之前(也就是现在的$dis[i][j]$是靠$1~k$作为中转站转移过来的)对最小环进行更新,因为$dis[i][j]$和$i->k->j$走的路肯定不一样(一个肯定没有经过$k$,一个肯定经过了$k$)

就可以啦。

(如果你会$floyd$的话,上面的应该都能看懂,不过不会的话可以百度一下,$floyd$不是很难)

->$end$

另外,有一个很坑的地方,是由于边->点造成的,如果边长成这个样子:

那把边搞成点就成了这个样子:

这是一个环,但是显然这个环是不符合题目要求的,因为题目要的是这种环:

特判一下就可以啦,由于$N$只有$100$,随便怎么搞都可以。

 /*
ID: Starry21
LANG: C++
TASK: fence6
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define N 105
#define INF 0x3f3f3f3f
int n,len[N]/*新图点权*/,ans=INF;
int dis[N][N]/*两点间最短距离(floyd)*/,s[N][N]/*直接距离(直接相连的)*/;
bool G[N][N]/*邻接矩阵*/,vis[N][N][N]/*判断三条边是否交于一点*/;
int tmp[N],ns[];//辅助输入,见程序
int main()
{
//freopen("fence6.in","r",stdin);
//freopen("fence6.out","w",stdout);
scanf("%d",&n);
for(int p=;p<=n;p++)
{
int id;scanf("%d",&id);
tmp[]=id;
scanf("%d %d %d",&len[id],&ns[],&ns[]);
for(int q=;q<=;q++)
{
for(int i=;i<=ns[q];i++)
{
int id2;scanf("%d",&id2);
G[id][id2]=G[id2][id]=;
tmp[i]=id2;//记录边交于一点的编号
for(int j=;j<i;j++)
for(int k=;k<j;k++)
vis[tmp[i]][tmp[j]][tmp[k]]=vis[tmp[i]][tmp[k]][tmp[j]]=vis[tmp[j]][tmp[i]][tmp[k]]=vis[tmp[j]][tmp[k]][tmp[i]]=vis[tmp[k]][tmp[i]][tmp[j]]=vis[tmp[k]][tmp[j]][tmp[i]]=;
}
}
}
memset(dis,0x3f,sizeof(dis));
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(G[i][j])
dis[i][j]=dis[j][i]=s[i][j]=s[j][i]=len[i]+len[j];
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
if(G[i][k])
for(int j=i+;j<=n;j++)
if(G[k][j]&&!vis[i][j][k])
ans=min(ans,dis[i][j]+s[i][k]+s[k][j]-len[i]-len[j]-len[k]);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]-len[k]);
}
printf("%d\n",ans);
return ;
}

Code

USACO4.1 Fence Loops【最小环&边->点转化】的更多相关文章

  1. 洛谷P2738 [USACO4.1]篱笆回路Fence Loops

    P2738 [USACO4.1]篱笆回路Fence Loops 11通过 21提交 题目提供者该用户不存在 标签USACO 难度提高+/省选- 提交  讨论  题解 最新讨论 暂时没有讨论 题目描述 ...

  2. 洛谷 P2738 [USACO4.1]篱笆回路Fence Loops

    P2738 [USACO4.1]篱笆回路Fence Loops 题目描述 农夫布朗的牧场上的篱笆已经失去控制了.它们分成了1~200英尺长的线段.只有在线段的端点处才能连接两个线段,有时给定的一个端点 ...

  3. USACO 4.1 Fence Loops(Floyd求最小环)

    Fence Loops The fences that surround Farmer Brown's collection of pastures have gotten out of contro ...

  4. USACO 4.1 Fence Loops

    Fence Loops The fences that surround Farmer Brown's collection of pastures have gotten out of contro ...

  5. [USACO4.1]篱笆回路Fence Loops

    题目:USACO Training 4.1(在官网上提交需加文件输入输出).洛谷P2738. 题目大意:给你一张图里的边集,让你求出这张图的最小环. 解题思路:求最小环很简单,用Floyd即可.最重要 ...

  6. 题解 P2738 【[USACO4.1]篱笆回路Fence Loops】

    这题是我期中测试的一题水题,然而英文题目太长了不想读...后面考完被同学提醒后20分钟切了(心塞) 切完看了波题解,发现貌似我的方法跟大家都不一样呢... 常规做法: \(Floyd\) 这个有三页的 ...

  7. USACO Section 4

    前言 好久没更新这个系列了,最近闲的无聊写一下.有两题搜索懒得写了. P2737 [USACO4.1]麦香牛块Beef McNuggets https://www.luogu.com.cn/probl ...

  8. usaco training 4.1.3 fence6 题解

    Fence Loops题解 The fences that surround Farmer Brown's collection of pastures have gotten out of cont ...

  9. USACO4.13Fence Loops(无向图最小环)

    最近脑子有点乱 老是不想清楚就啪啪的敲 敲完之后一看 咦..样例都过不去 仔细一想 这样不对啊 刚开始就写了一SPFA 最后发现边跟点的关系没处理好 删了..写dfs..还是没转化好 开始搜解题方法 ...

随机推荐

  1. nginx第三天

    nginx架构分析 nginx模块化 nginx基于模块设计,每个模块是一个功能实现,分布式开发,团队协作 核心模块,标准http模块,可选http模块,邮件模块,第三方模块 编译后的源码目录  ob ...

  2. Tarjan求点双连通分量

    概述 在一个无向图中,若任意两点间至少存在两条“点不重复”的路径,则说这个图是点双连通的(简称双连通,biconnected) 在一个无向图中,点双连通的极大子图称为点双连通分量(简称双连通分量,Bi ...

  3. myleecode

    目录 # myleecode 1.冒泡排序 2.快速排序 3.进度条打印 4.打印 九九乘法表 5.打印 金字塔 6.接雨滴 7.一行代码实现1-100个数相加 8.如何在不使用内置方法强制转换的情况 ...

  4. Java——静态代理、动态代理

    https://blog.csdn.net/giserstone/article/details/17199755 代理的作用:业务类只需要关注业务逻辑本身,保证了业务类的重用性 一 静态代理 特点: ...

  5. react-报错-1

    react 错误提示:显示IP端口被占用

  6. CSS样式,语法,添加方法,文本,字体

    总结一些css的基础知识 ㈠css样式 css:cascading style sheets  层叠样式表 css内容和样式相分离,便于修改样式. ㈡css语法 ㈢css添加方法 ⑴行内添加:放在&l ...

  7. 2018美团CodeM编程大赛初赛B轮 A题开关灯

    题目描述 美团的办公室一共有n层,每层有m个会议室,可以看成是一个n*m的网格图.工程师们每天的工作需要协作的地方很多,经常要到会议室开会解决各种问题.公司是提倡勤俭节约的,因此每次会议室只在使用时才 ...

  8. Latex生成的.pdf 公式之间隔了几行空白

    如题, 解决办法: \vspace{-1.5cm},这个数值根据需要来设置.

  9. 用JavaScript实现div的鼠标拖拽效果

    实现原理鼠标按下时根据onmousemove事件来动态获取鼠标坐标位置以此来更新div的位置,实现的前提时div要有一个定位效果,不然的话是移动不了它的. HTML <div class=&qu ...

  10. eclipse内存溢出 参数配置

    http://blog.csdn.net/liuhenghui5201/article/details/50783444