tarjan算法求无向图的桥、边双连通分量并缩点
// tarjan算法求无向图的桥、边双连通分量并缩点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int SIZE = ;
int head[SIZE], ver[SIZE * ], Next[SIZE * ];
int dfn[SIZE], low[SIZE], c[SIZE];
int n, m, tot, num, dcc, tc;
bool bridge[SIZE * ];
int hc[SIZE], vc[SIZE * ], nc[SIZE * ]; void add(int x, int y) {
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
} void add_c(int x, int y) {
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
} void tarjan(int x, int in_edge) {
dfn[x] = low[x] = ++num;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
//当前点未走过
if (!dfn[y]) {
tarjan(y, i);
low[x] = min(low[x], low[y]);
if (low[y] > dfn[x])
//i 与 i^1是桥
bridge[i] = bridge[i ^ ] = true;
}
//反向边更新
else if (i != (in_edge ^ ))
low[x] = min(low[x], dfn[y]);
}
} void dfs(int x) {
c[x] = dcc;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (c[y] || bridge[i]) continue;
dfs(y);
}
} int main() {
cin >> n >> m;
tot = ;
for (int i = ; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y), add(y, x);
}
for (int i = ; i <= n; i++)
if (!dfn[i]) tarjan(i, );
for (int i = ; i < tot; i += )
if (bridge[i])//当前桥,输出连通桥的两点
printf("%d %d\n", ver[i ^ ], ver[i]);
//求边双连通分量(不存在桥)
for (int i = ; i <= n; i++)
if (!c[i]) {
++dcc;
dfs(i);
}
printf("There are %d e-DCCs.\n", dcc);
for (int i = ; i <= n; i++)
printf("%d belongs to DCC %d.\n", i, c[i]); //缩点
tc = ;
for (int i = ; i <= tot; i++) {
int x = ver[i ^ ], y = ver[i];
if (c[x] == c[y]) continue;
add_c(c[x], c[y]);
}
printf("缩点之后的森林,点数 %d,边数 %d\n", dcc, tc / );
for (int i = ; i < tc; i += )
printf("%d %d\n", vc[i ^ ], vc[i]);
}
tarjan算法求无向图的桥、边双连通分量并缩点的更多相关文章
- [Tarjan系列] Tarjan算法求无向图的桥和割点
RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...
- Light OJ - 1026 - Critical Links(图论-Tarjan算法求无向图的桥数) - 带详细注释
原题链接 无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 也可以先用Tajan()进行dfs算出所有点 的low和dfn值,并记录dfs过程中每个 点的父节点:然后再把所有点遍历一遍 ...
- [Tarjan系列] Tarjan算法求无向图的双连通分量
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...
- Tarjan算法初探(3):求割点与桥以及双连通分量
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的 ...
- tarjan算法与无向图的连通性(割点,桥,双连通分量,缩点)
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分 ...
- tarjan算法--求无向图的割点和桥
一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥. 2.割点:无向连通图中 ...
- SPF Tarjan算法求无向图割点(关节点)入门题
SPF 题目抽象,给出一个连通图的一些边,求关节点.以及每个关节点分出的连通分量的个数 邻接矩阵只要16ms,而邻接表却要32ms, 花费了大量的时间在加边上. // time 16ms 1 ...
- Hdu 4738【tanjan求无向图的桥】割边判定定理 dfn[x] < low[y]
题目: 曹操在长江上建立了一些点,点之间有一些边连着.如果这些点构成的无向图变成了连通图,那么曹操就无敌了.刘备为了防止曹操变得无敌,就打算去摧毁连接曹操的点的桥.但是诸葛亮把所有炸弹都带走了,只留下 ...
- Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...
随机推荐
- 使用VSCODE开发UE4
完全可行,速度很快,智能提示.代码格式化.查找Symbol等等都不比VS+Visual AssistX 差. 准备 打开编辑器的Editor Preferences>Source Code,选择 ...
- ubuntu16.04配置记录
新开一篇随笔记录ubuntu16.04配置中遇到的坑 1.安装Bumblebee(大黄蜂) Bumblebee是一款双显卡驱动,可以关闭独显,有效控制笔记本发热 第一步:安装我们的主角Bumblebe ...
- 实现图像添加label
void CmapwingisTest2View::OnToolsAddTiffLayer() { TCHAR szFilters[]= _T("TIFF Files (*.tif)|*.t ...
- Contacts解析
显示联系人相关类packages/apps/Contacts/src/com/android/contacts/activities/PeopleActivity.javapackages/apps/ ...
- 删除oracle居家必备
- Kotlin之定义变量
java : int n = 30 ; final int m = 30 ; float k = 2.5f; string s = "sss"; short i = 5; bool ...
- 自定义view防支付成功页面
package com.loaderman.customviewdemo; import android.content.Context; import android.graphics.Canvas ...
- Oracle 安装 RAC 11.2.0.4 centos7.4 -udev磁盘绑定/执行root脚本报错
在centos 7.4上安装oracle rac 11.2.0.4 报错及相关解决 $ cat /etc/redhat-release CentOS Linux release 7.4.1708 (C ...
- Flume采集日志
角色 Source 数据来源 (exec, kafka, http…)Channel 数据通道 (memory,file,jdbc)Sink 数据目的地 (kafka,hdfs,es…) Agent ...
- 关于FPS游戏的设计问题
第一个想到的问题: 首先以unity的FPSCharactorController为例,这里规定,相机的方向中心一定是瞄准的方向中心.设置身体的扭曲朝向相机方向,这样身体可以弯腰.你们看图中,我让玩家 ...