int dfn[N], low[N], dfncnt, s[N], tp;
int scc[N], sc; // 结点 i 所在 scc 的编号
int sz[N]; // 强连通 i 的大小
void tarjan(int u) {
low[u] = dfn[u] = ++dfncnt, s[++tp] = u;
for(int i = h[u]; i; i = e[i].nex) {
const int &v = e[i].t;
if(!dfn[v])
tarjan(v), low[u] = min(low[u], low[v]);
else if(!scc[v])
low[u] = min(low[u], dfn[v]);
}
if(dfn[u] == low[u]) {
++sc;
while(s[tp] != u)
scc[s[tp]] = sc, sz[sc]++, --tp;
scc[s[tp]] = sc, sz[sc]++, --tp;
}
}

割点:

对于根节点,判断是不是割点很简单——计算其子树数量,如果有2棵即以上的子树,就是割点。因为如果去掉这个点,这两棵子树就不能互相到达。

对于非根节点,判断是不是割点就有些麻烦了。我们维护两个数组dfn[]和low[],dfn[u]表示顶点u第几个被(首次)访问,low[u]表示顶点u及其子树中的点,通过回边,能够回溯到的最早的点(dfn最小)的dfn值(但不能通过连接u与其父节点的边)。对于边(u, v),如果low[v]>=dfn[u],此时u就是割点。

假设当前顶点为u,则默认low[u]=dfn[u],即最早只能回溯到自身。

有一条边(u, v),如果v未访问过,继续DFS,DFS完之后,low[u]=min(low[u], low[v]);

如果v访问过(且u不是v的父亲),就不需要继续DFS了,一定有dfn[v]<dfn[u],low[u]=min(low[u], dfn[v])。

下面这个ufa的意思是uROOT,他就喜欢传个fa

void tarjan (int u,int fa)
{
DFN[u]=LOW[u]=++idx;
int child=0;
for (int i=head[u];i!=0;i=pre[i].mark)
{
int nx=pre[i].nxt;
if (!DFN[nx])
{
tarjan (nx,fa);
LOW[u]=min (LOW[u],LOW[nx]);
if (LOW[nx]>=DFN[u]&&u!=fa)
cut[u]=1;
if(u==fa)
child++;
}
LOW[u]=min (LOW[u],DFN[nx]);
}
if (child>=2&&u==fa)
cut[u]=1;
} for (int i=1;i<=n;i++)
if (DFN[i]==0)
tarjan (i,i);
for (int i=1;i<=n;i++)
if (cut[i])
tot++;

割边:

和割点差不多,还叫做割桥。

对于一个无向图,如果删掉一条边后图中的连通分量数增加了,则称这条边为桥或者割边。

实现

和割点差不多,只要改一处:low(v)>dfn(u)就可以了,而且不需要考虑根节点的问题。

割边是和是不是根节点没关系的,原来我们求割点的时候是指点v是不可能不经过父节点u为回到祖先节点(包括父节点),所以顶点u是割点。如果low(v)==dfn(u)表示还可以回到父节点,如果顶点v不能回到祖先也没有另外一条回到父亲的路,那么(u,v)这条边就是割边。

模板 - 强连通分量/割点/桥 - Tarjan的更多相关文章

  1. 【学习整理】Tarjan:强连通分量+割点+割边

    Tarjan求强连通分量 在一个有向图中,如果某两点间都有互相到达的路径,那么称中两个点强联通,如果任意两点都强联通,那么称这个图为强联通图:一个有向图的极大强联通子图称为强联通分量.   算法可以在 ...

  2. 强连通分量(Korasaju & Tarjan)学习笔记

    好久以前学过的东西...现在已经全忘了 很多图论问题需要用到强连通分量,还是很有必要重新学一遍的 强连通分量(Strongly Connected Component / SCC) 指在一个有向图中, ...

  3. 小结:双连通分量 & 强连通分量 & 割点 & 割边

    概要: 各种dfs时间戳..全是tarjan(或加上他的小伙伴)无限膜拜tarjan orzzzzzzzzz 技巧及注意: 强连通分量是有向图,双连通分量是无向图. 强连通分量找环时的决策和双连通的决 ...

  4. 模板 - 强连通分量 - Kosaraju

    Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...

  5. 【(最小权点基)tarjan强连通分量缩点+tarjan模板】HDU 5934 Bomb

    [AC] #include<bits/stdc++.h> using namespace std; typedef long long ll; int n; ; ; const int i ...

  6. tarjan求强连通分量+缩点+割点/割桥(点双/边双)以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  7. 图论之tarjan真乃神人也,强连通分量,割点,桥,双连通他都会

    先来%一下Robert Tarjan前辈 %%%%%%%%%%%%%%%%%% 然后是热情感谢下列并不止这些大佬的博客: 图连通性(一):Tarjan算法求解有向图强连通分量 图连通性(二):Tarj ...

  8. tarjan求强连通分量+缩点+割点以及一些证明

    “tarjan陪伴强联通分量 生成树完成后思路才闪光 欧拉跑过的七桥古塘 让你 心驰神往”----<膜你抄>   自从听完这首歌,我就对tarjan开始心驰神往了,不过由于之前水平不足,一 ...

  9. 算法模板——Tarjan强连通分量

    功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量 原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点 这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有 ...

随机推荐

  1. hdu_3535 (AreYouBusy)

    http://acm.hdu.edu.cn/showproblem.php?pid=3535 题意:        给你n个工作集合,给你T的时间去做它们.给你m和s,说明这个工作集合有m件事可以做, ...

  2. scala基础-1

    函数式编程 ​ 并行编程 ​ 多核计算.云计算 ​ 引用透明,给值确定,结果也确定 数据类型 三种变量修饰符 ​ val 定义immutable variable ​ var 定义mutable va ...

  3. kill 与 killall和过滤后杀掉

    1.绝杀 kill -9 PID  杀掉单一进程  例如:kill -9 pid号   同意的 kill -s SIGKILL   这个强大和危险的命令迫使进程在运行时突然终止,进程在结束后不能自我清 ...

  4. TL;DR

    英文文章中,偶尔会出现TL;DR 的字符. TL;DR=>Too Long; Don’t Read=>太长了,读不下去=>长话短说 一般用于在文章开头先给出干货.

  5. 【Spark机器学习速成宝典】模型篇02逻辑斯谛回归【Logistic回归】(Python版)

    目录 Logistic回归原理 Logistic回归代码(Spark Python) Logistic回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7890468 ...

  6. linux 中文乱码解决办法

    就是从数据库中取出来时,在存入linux的文件里时,在字符流时制定编码格式.代码如下: FileOutputStream fos=new FileOutputStream(new File(fileP ...

  7. SpringMVC——-Controller返回格式化数据如JSON、XML的配置方式和机制

    1.本文内容 我们在Web项目开发过程中,一般来说访问一个处理器,然后会返回一个视图,或者跳转到另外的处理器.但是随着项目越来越复杂,需求越来越复杂,对于处理器返回数据的类型要求也越来越多.比如要求能 ...

  8. if && grep

    if    条件  then         Command else         Command fi                               别忘了这个结尾 ——————— ...

  9. Redis数据类型,面试相关

    1.Redis最为常用的数据类型主要有以下几种 String Hash List (消息队列) Set (可以用于存储不重复的列表数据) Sorted Set (有序不重复数的列表数据) Pub/Su ...

  10. 源码编译apache报错的解决方法

    源码编译apache报错的解决方法   问题介绍 在源码编译安装httpd时,./configure执行无错误,到make时就报错,在网络上搜索了很多文章,很多方法如换apr-util的低版本并不能很 ...