题面

小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达。游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止。

小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程。但是这个游戏中宝物经常变化,有时某个村庄中会突然出现宝物,有时某个村庄内的宝物会突然消失,因此小B需要不断地更新数据,但是小B太懒了,不愿意自己计算,因此他向你求助。为了简化问题,我们认为最开始时所有村庄内均没有宝物

分析

本质上是在一棵树上取出若干节点,询问把这几个节点访问一遍的距离

可以发现如果我们按照dfs序将节点排序,然后将排序后的相邻节点距离相加,最后再加上序列首尾距离,就能求出答案

如序列为{1,3,4,5},则答案为dist(1,3)+dist(3,4)+dist(4,5)+dist(5,1)

因为我们访问节点一定是像dfs一样访问才能得到最短路径,所以正确性显然

我们用一个set维护这个排序后的节点序列

可以发现,每次新加入一个节点之后只会改变节点的前驱和后继相关的距离,维护一下即可

代码

//https://www.luogu.org/problemnew/show/P3320
#include<iostream>
#include<cstdio>
#include<set>
#include<cmath>
#define INF 0x3f3f3f3f
#define maxn 100005
#define maxlogn 20
using namespace std;
int n,m;
struct edge{
int from;
int to;
int next;
int len;
}E[maxn<<1];
int head[maxn];
int sz=1;
void add_edge(int u,int v,int w){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
E[sz].len=w;
head[u]=sz;
}
int logn;
int cnt=0;
int dfn[maxn];
int hash_dfn[maxn];//存储dfs序为i的节点编号
int anc[maxn][maxlogn];
int deep[maxn];
long long dist[maxn];
void dfs(int x,int fa){
dfn[x]=++cnt;
hash_dfn[dfn[x]]=x;
deep[x]=deep[fa]+1;
anc[x][0]=fa;
for(int i=1;i<=logn;i++) anc[x][i]=anc[anc[x][i-1]][i-1];
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dist[y]=dist[x]+E[i].len;
dfs(y,x);
}
}
}
int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=logn;i>=0;i--){
if(deep[anc[x][i]]>=deep[y]){
x=anc[x][i];
}
}
if(x==y) return x;
for(int i=logn;i>=0;i--){
if(anc[x][i]!=anc[y][i]){
x=anc[x][i];
y=anc[y][i];
}
}
return anc[x][0];
}
long long get_dist(int x,int y){
return dist[x]+dist[y]-2*dist[lca(x,y)];
} set<int>seq; //set里实际上存的是节点的dfs序值而不是编号
long long sum=0,ans;
int main(){
int u,v,w,x;
scanf("%d %d",&n,&m);
logn=log2(n);
for(int i=1;i<n;i++){
scanf("%d %d %d",&u,&v,&w);
add_edge(u,v,w);
add_edge(v,u,w);
}
dfs(1,0);
seq.insert(INF);//防止越界
seq.insert(-INF);
for(int i=1;i<=m;i++){
scanf("%d",&x);
if(!seq.count(dfn[x])){
int l=*(--seq.lower_bound(dfn[x]));
int r=*seq.upper_bound(dfn[x]);
//注意边界判断
if(l!=-INF) sum+=get_dist(hash_dfn[l],x);
if(r!=INF) sum+=get_dist(hash_dfn[r],x);
if(l!=-INF&&r!=INF) sum-=get_dist(hash_dfn[l],hash_dfn[r]);
seq.insert(dfn[x]);
}else{
int l=*(--seq.lower_bound(dfn[x]));
int r=*seq.upper_bound(dfn[x]);
if(l!=-INF) sum-=get_dist(hash_dfn[l],x);
if(r!=INF) sum-=get_dist(hash_dfn[r],x);
if(l!=-INF&&r!=INF) sum+=get_dist(hash_dfn[l],hash_dfn[r]);
seq.erase(seq.lower_bound(dfn[x]));
}
ans=sum;
if(seq.size()-2>=2) ans+=get_dist(hash_dfn[*(++seq.lower_bound(-INF))],hash_dfn[*(--seq.lower_bound(INF))]);
//记得加上首尾距离,注意我们一开始插入了-INF和+INF,所以set的大小>=4时才会有序列首尾
printf("%lld\n",ans);
}
}

[BZOJ 3991][SDOI2015]寻宝游戏(dfs序)的更多相关文章

  1. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  2. 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  3. bzoj 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  4. BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  5. BZOJ 3991: [SDOI2015]寻宝游戏 [虚树 树链的并 set]

    传送门 题意: $n$个点的树,$m$次变动使得某个点有宝物或没宝物,询问每次变动后集齐所有宝物并返回原点的最小距离 转化成有根树,求树链的并... 两两树链求并就可以,但我们按照$dfs$序来两两求 ...

  6. BZOJ.3991.[SDOI2015]寻宝游戏(思路 set)

    题目链接 从哪个点出发最短路径都是一样的(最后都要回来). 脑补一下,最短路应该是按照DFS的顺序,依次访问.回溯遍历所有点,然后再回到起点. 即按DFS序排序后,Ans=dis(p1,p2)+dis ...

  7. bzoj3991: [SDOI2015]寻宝游戏--DFS序+LCA+set动态维护

    之前貌似在hdu还是poj上写过这道题. #include<stdio.h> #include<string.h> #include<algorithm> #inc ...

  8. 3991: [SDOI2015]寻宝游戏

    3991: [SDOI2015]寻宝游戏 https://www.lydsy.com/JudgeOnline/problem.php?id=3991 分析: 虚树+set. 要求树上许多点之间的路径的 ...

  9. 【BZOJ】3991: [SDOI2015]寻宝游戏 虚树+DFS序+set

    [题意]给定n个点的带边权树,对于树上存在的若干特殊点,要求任选一个点开始将所有特殊点走遍后返回.现在初始没有特殊点,m次操作每次增加或减少一个特殊点,求每次操作后的总代价.n,m<=10^5. ...

随机推荐

  1. websocket在springboot+vue中的使用

    1.websocket在springboot中的一种实现 在java后台中,websocket是作为一种服务端配置,其配置如下 @Configuration public class WebSocke ...

  2. Python之路-面向对象&继承和多态&类属性和实例属性&类方法和静态方法

    一.面向对象 编程方式 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强…” 什么是面 ...

  3. Dubbo源码学习总结系列七---注册中心

    Dubbo注册中心是框架的核心模块,提供了服务注册发现(包括服务提供者.消费者.路由策略.覆盖规则)的功能,该功能集中体现了服务治理的特性.该模块结合Cluster模块实现了集群服务.Dubbo管理控 ...

  4. 2018-2-13-win10-uwp-smms图床

    title author date CreateTime categories win10 uwp smms图床 lindexi 2018-2-13 17:23:3 +0800 2018-2-13 1 ...

  5. centos误删除文件如何恢复

    当意识到误删除文件后,切忌千万不要再频繁写入了,否则你的数据恢复的数量将会很少. 而我们要做的是,第一时间把服务器上的服务全部停掉,直接killall 进程名 或者 kill -9 pid . 然后把 ...

  6. kali Linux 入门(二)

    九.软件安装 1.apt install --软件名称-- -y 2.apt install packge_name----库安装 3.apt install kali-linux-all -y--- ...

  7. ACM-ICPC 2015 Changchun Preliminary Contest J. Unknown Treasure (卢卡斯定理+中国剩余定理)

    题目链接:https://nanti.jisuanke.com/t/A1842 题目大意:给定整数n,m,k,其中1≤m≤n≤1018,k≤10, 然后给出k个素数,保证M=p[1]*p[2]……*p ...

  8. CSS3选择器 ::selection选择器

    “::selection”伪元素是用来匹配突出显示的文本(用鼠标选择文本时的文本).浏览器默认情况下,用鼠标选择网页文本是以“深蓝的背景,白色的字体”显示的,效果如下图所示: 从上图中可以看出,用鼠标 ...

  9. php7 mysqli连接mysql的几种方式

    一.过程是方法 function connect(){ static $conn; if(!$conn){ $conn = mysqli_connect(DB_HOST,DB_USER,DB_PWD) ...

  10. django之模型类在视图中的应用

    一:模型类直接从把前端表单传入的值,进行存储. @csrf_exempt def regist(request): if request.method == 'POST': form = UserFo ...