【LOJ#536】「LibreOJ Round #6」花札
题目描述
「UniversalNO」的规则如下:每张牌有一种颜色和一个点数。两个人轮流出牌,由 Alice 先手,最开始牌堆为空,出的人可以出任意牌(放到牌堆顶),之后出的牌必须和当时牌堆顶的牌的颜色或点数至少有一个相同。有牌可出者必须出,无牌可出者输。
Alice 和 Shinobu 玩了几局后觉得原来的规则太依靠运气,于是她们加了一个新玩法:Alice 出了第一张之后,两个人立即交换手里的牌,然后从 Alice 开始继续按原来的规则进行游戏。当然,这次 Alice 出的牌必须和她刚开始出的颜色或点数至少有一个相同。
交换之后两人都知道对方的手牌(就是开局时自己的手牌),于是就有必胜策略了。
现在已知 Alice 和 Shinobu 手里一开始的牌,请你求出对于 Alice 第一次出牌的每种情况,谁有必胜策略。
Sol
不难看出出了一张牌后另一个人能够出的牌是可以事先知道的。
那么这就形成一个二分图。
博弈过程相当于是一开始在先手的点上放了一个棋子,然后每次轮流沿着出边走,不能走的人失败。
这是一个经典的二分图博弈模型。
先手必胜当且仅当棋子所在点一定在最大匹配中。
判断方法:
跑网络流,要求源点到这个点有流量且这个点没有被分割在源点集合。
code:
#include<bits/stdc++.h>
using namespace std;
#define Set(a,b) memset(a,b,sizeof(a))
template<class T>inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}typedef long long ll;
const int N=4e4+10;
const int MAXN=2e5+10;
const int MAXM=2e6+10;
int m,c,n1,n2;
struct edge{
int to,next,cap;
}a[MAXM<<2];
int head[MAXN],cnt=0,cur[MAXN],d[MAXN];
inline void add(int x,int y,int z){a[cnt]=(edge){y,head[x],z};head[x]=cnt++;}
inline void add_edge(int x,int y,int z){add(x,y,z),add(y,x,0);}
int X1[N],X2[N],Y1[N],Y2[N];
int idnum[N],idcol[N],idshi[N];
int S=0,T;
queue<int> Q;
int dfs(int u,int flow){
if(u==T) return flow;
int res=flow;
for(int v,&i=cur[u];~i;i=a[i].next) {
v=a[i].to;if(!a[i].cap||d[v]!=d[u]+1) continue;
int f=dfs(v,min(res,a[i].cap));
a[i].cap-=f,a[i^1].cap+=f;
res-=f;if(!f) d[v]=0;
if(!res) break;
}
return flow-res;
}
inline bool bfs(){
for(int i=S;i<=T;++i) d[i]=0;d[S]=1;
while(!Q.empty()) Q.pop();Q.push(S);
while(!Q.empty()) {
int u=Q.front();Q.pop();
for(int v,i=head[u];~i;i=a[i].next) {
v=a[i].to;if(!a[i].cap||d[v]) continue;
d[v]=d[u]+1;if(v==T) return 1;Q.push(v);
}
}
return d[T];
}
inline void Dinic(){
int fl=0;
while(bfs()) memcpy(cur,head,sizeof(cur)),fl+=dfs(S,1e9);
return;
}
int ans[N];
int main()
{
init(m),init(c);init(n1);
Set(head,-1);for(int i=1;i<=n1;++i) init(X1[i]),init(Y1[i]);
init(n2);int h=n1;
for(int i=1;i<=n2;++i) idshi[i]=++h;
for(int i=1;i<=m;++i) idnum[i]=++h;
for(int i=1;i<=c;++i) idcol[i]=++h;
T=++h;
for(int i=1;i<=n1;++i) add_edge(S,i,1),add_edge(i,idnum[X1[i]],1),add_edge(i,idcol[Y1[i]],1);
for(int i=1;i<=n2;++i) init(X2[i]),init(Y2[i]),add_edge(idshi[i],T,1),add_edge(idnum[X2[i]],idshi[i],1),add_edge(idcol[Y2[i]],idshi[i],1);
Dinic();bfs();
for(int v,i=head[S];~i;i=a[i].next) {v=a[i].to;if(v>0&&v<=n1&&!a[i].cap&&!d[v]) ans[v]=1;}
for(int i=1;i<=n1;++i) puts(ans[i]? "1":"0");
return 0;
}
【LOJ#536】「LibreOJ Round #6」花札的更多相关文章
- loj536「LibreOJ Round #6」花札(二分图博弈)
loj536「LibreOJ Round #6」花札(二分图博弈) loj 题解时间 很明显是二分图博弈. 以某个点为起点,先手必胜的充要条件是起点一定在最大匹配中. 判断方法是看起点到该点的边有流量 ...
- loj536 「LibreOJ Round #6」花札
一眼二分图博弈,于是我们可以拿到69分的好成绩. 二分图暴力加边的数目是O(n^2)的,于是我们考虑网络流优化建图,将alice的每个牌向其的颜色和编号节点连边,bob的每个牌由其颜色和编号节点向其连 ...
- [LOJ#531]「LibreOJ β Round #5」游戏
[LOJ#531]「LibreOJ β Round #5」游戏 试题描述 LCR 三分钟就解决了问题,她自信地输入了结果-- > -- 正在检查程序 -- > -- 检查通过,正在评估智商 ...
- [LOJ#530]「LibreOJ β Round #5」最小倍数
[LOJ#530]「LibreOJ β Round #5」最小倍数 试题描述 第二天,LCR 终于启动了备份存储器,准备上传数据时,却没有找到熟悉的文件资源,取而代之的是而屏幕上显示的一段话: 您的文 ...
- [LOJ#516]「LibreOJ β Round #2」DP 一般看规律
[LOJ#516]「LibreOJ β Round #2」DP 一般看规律 试题描述 给定一个长度为 \(n\) 的序列 \(a\),一共有 \(m\) 个操作. 每次操作的内容为:给定 \(x,y\ ...
- [LOJ#515]「LibreOJ β Round #2」贪心只能过样例
[LOJ#515]「LibreOJ β Round #2」贪心只能过样例 试题描述 一共有 \(n\) 个数,第 \(i\) 个数 \(x_i\) 可以取 \([a_i , b_i]\) 中任意值. ...
- [LOJ#525]「LibreOJ β Round #4」多项式
[LOJ#525]「LibreOJ β Round #4」多项式 试题描述 给定一个正整数 k,你需要寻找一个系数均为 0 到 k−1 之间的非零多项式 f(x),满足对于任意整数 x 均有 f(x) ...
- [LOJ#526]「LibreOJ β Round #4」子集
[LOJ#526]「LibreOJ β Round #4」子集 试题描述 qmqmqm有一个长为 n 的数列 a1,a2,……,an,你需要选择集合{1,2,……,n}的一个子集,使得这个子集中任意两 ...
- [LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机)
[LOJ#522]「LibreOJ β Round #3」绯色 IOI(危机) 试题描述 IOI 的比赛开始了.Jsp 和 Rlc 坐在一个角落,这时他们听到了一个异样的声音 …… 接着他们发现自己收 ...
随机推荐
- Misc题目
@freebuff教程https://www.freebuf.com/column/196815.html @巅峰极客wp https://www.anquanke.com/post/id/18914 ...
- gulp时发生错误---------const { Math, Object } = primordials;
[问题描述] 执行完npm install后,对前台页面进行gulp操作时,报如下错误: const { Math, Object } = primordials; [错误日志] ***@**** M ...
- Oracle表的Rowid字段
Rowid 字段类型: Rowid 是一行数据的一个唯一标识. ROWID 是数据的详细地址,通过 rowid,oracle 可以快速的定位某行具体的数据的位置. ROWID 可以分为物理 rowid ...
- Android SDK安装与环境配置
一.单独下载只有sdk的包,SDK不包括在Android Studio里,适用于不需要Android Studio的用户,其他可自行去官网下载. 1:Android SDK (https://www. ...
- 附录1:arrayanalysis的本地使用(质量控制)
访问:https://github.com/BiGCAT-UM/affyQC_Module,点击“Download ZIP”,下载得到affyQC_Module-master.zip,解压得到一个af ...
- Collection接口的子接口——Queue接口
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html public interface Queue<E> exten ...
- redis 学习(二)-- 通用命令
redis 学习(二)-- 通用命令 1. keys pattern 含义:查找所有符合给定模式(pattern)的key 命令 含义 keys * 遍历所有 key keys he[h-l]* 遍历 ...
- C++ 多态、虚函数(virtual 关键字)、静态联编、动态联编
函数重写:(在子类中重写父类中的函数) 父类中被重写的函数 依然会继承 给子类. 子类中重写的函数将覆盖父类中的函数. 通过作用域分辨符 :: 可以访问到父类中的函数. 例如: #includ ...
- thinkphp3.2.3 自动验证 unique 出错的解决办法
场景:修改数据时,唯一验证name字段出错,提示已存在. 排查: 1.传入的参数是否包含主键,因为 D('模型名')->create() 会自动判断是否是新增或者修改,根据传入的参数判断是否包含 ...
- echarts-迁徙图地点图标颜色修改
引用:https://gallery.echartsjs.com/editor.html?c=xLSy9AUmlA var uploadedDataURL = "/asset/get/s/d ...