题目链接

题意

求满足如下条件的多叉树个数:

1.每一个点的儿子个数在给定的集合 \(S\) 内

2.总的叶子节点树为 \(s\)

儿子之间有顺序关系,但节点是没有标号的。

Sol

拉格朗日反演板子题。

(似乎不像是个反演)


拉格朗日反演:

用来求 复合逆

如果两个多项式 \(F(x),G(x)\) 满足常数项均为 0,一次项均不为 0,并且 \(G(F(x))=x\),那么称 \(F(x)\) 与 \(G(x)\) 互为复合逆(其实就是反函数)。

其中 \(F(x)\) 和 \(G(x)\) 可以互换。

结论如下:

\[[x^n]F(x)=\frac{1}{n}[x^{-1}]\frac{1}{G^n(x)}
\]

证明工作及实际做法:

这个式子里怎么有 \(x^{-1}\) 啊...据说是抽象代数里的,直接懵逼。

先不管这些,假装我们允许下标为负,先来随便乱推一下这个式子。

\[G(F(x))=x
\]

\[\sum_{i=1}a_iF^i(x)=x
\]

这里写成了形式幂级数的形式。

我们两边对 \(x\) 求导。

\[\sum_{i=1}ia_iF^{i-1}(x)F'(x)=1
\]

两边同时除掉 \(F^n(x)\),取 \([x^{-1}]\)(我也不知道我在干什么)

\[[x^{-1}]\sum_{i=1}ia_iF^{i-n-1}(x)F'(x)=[x^{-1}]\frac{1}{F^n(x)}
\]

当 \(i\neq n\) 时,\(F^{i-n-1}(x)F'(x)=\dfrac{\big(F^{i-n}(x)\big)'}{i-n}\)

求导后 \(x^{-1}\) 项系数一定是 0。

所以只考虑 \(i=n\) 的情况。

这时

\[F^{-1}(x)F'(x)=\dfrac{\sum_{i=1} ia_ix^{i-1}}{\sum_{i=1}a_ix^i}
\]

\[F^{-1}(x)F'(x)=\dfrac{\sum_{i=1} ia_ix^{i-1}}{a_1x}·\dfrac{1}{1+\sum_{i=1}\frac{a_{i+1}}{a_1}x^i}
\]

后面那个多项式能够求逆,它的逆的常数项显然为 1,因此不存在 \(-1\) 次方项。

而前面那个多项式的 \([x^{-1}]\) 就是 : \(\frac{a_1}{a_1}=1\)

所以 : \([x^{-1}] F^{-1}(x)F'(x)=1\)

所以由之前的式子:

\([x^{-1}]na_nF^{-1}(x)F'(x)=[x^{-1}]\frac{1}{F^n(x)}\)

那么就证完了:

\[a_n=\frac{1}{n}[x^{-1}]\frac{1}{F^n(x)}
\]

但是我们并没有办法直接求解 \([x^{-1}]\),所以我们可以把下标移动一下。

\[a_n=\frac{1}{n}[x^{n-1}]\frac{x^n}{F^n(x)}
\]

这里面乘了个 \(x^n\),哪里来的 \(x^{n-1}\) 系数啊,然后\(F(x)\)还没有逆我怎么求啊 \(QAQ\)

注意到 \(F(x)\) 常数项为 \(0\),而一次项不为 \(0\)

于是乎:

\[a_n=\frac{1}{n}[x^{n-1}]\frac{1}{\big(\frac{F(x)}{x}\big)^n}
\]

这个好像就有 \(x^{n-1}\)了,而且还有逆,万事大吉。


回到本题,按照小朋友和二叉树的套路直接弄个生成函数。

设 \(F(x)\) 是生成一棵含 \(i\) 个叶子节点的合法的树的这个数列的生成函数 。

生成方式显然就是把一堆子树组合起来。

\[F(x)=x+\sum_{i\in S}F^i(x)
\]

枚举有几个儿子,注意这里我们的下标表示的是叶子个数,所以后面的多项式不用乘上 \(x\) 并且由于一个节点是一个叶子,应该给 \(x^1\) 方项系数加 \(1\)

移个项:

\[F(x)-\sum_{i\in S}F^i(x)=x
\]

发现复合函数!

令 \(G(x)=x-\sum_{i\in S}x^i\)

那么:

\[G(F(x))=x
\]

我们要求的是\(F(x)\)的第 \(s\) 次方项系数然后就是套公式的事了。

什么你说你不想写 多项式快速幂 ?

注意到我们是在 \(bzoj\) 上进行评测,时间限制是总时间。

所以我们直接写倍增快速幂就能在 \(bzoj\) 上通过此题(OWO)。

#include<bits/stdc++.h>
#define Set(a,b) memset(a,b,sizeof(a))
#define Clear(a,_begin_,_end_) for(int i=_begin_;i<_end_;++i) a[i]=0
using namespace std;
const int N=1e5+10,MAXN=N<<2;
const int mod=950009857,phi=mod-1;
template <typename T> inline void init(T&x){
x=0;char ch=getchar();bool t=0;
for(;ch>'9'||ch<'0';ch=getchar()) if(ch=='-') t=1;
for(;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+(ch-48);
if(t) x=-x;return;
}
typedef long long ll;
template<typename T>inline void Inc(T&x,int y){x+=y;if(x>=mod) x-=mod;return;}
template<typename T>inline void Dec(T&x,int y){x-=y;if(x < 0) x+=mod;return;}
template<typename T>inline int fpow(int x,T k){int ret=1;for(;k;k>>=1,x=(ll)x*x%mod) if(k&1) ret=(ll)ret*x%mod;return ret;}
inline int Sum(int x,int y){x+=y;if(x>=mod) return x-mod;return x;}
inline int Dif(int x,int y){x-=y;if(x < 0 ) return x+mod;return x;}
int rader[MAXN],wn[30],iwn[30],Inv[MAXN];
inline void Calc(){
for(int i=0;i<30;++i) wn[i]=fpow(7,phi/(1<<i)),iwn[i]=fpow(wn[i],mod-2);
Inv[1]=1;for(int i=2;i<MAXN;++i) Inv[i]=(ll)(mod-mod/i)*Inv[mod%i]%mod;return;
}
inline int Init(int n){int len=1,up=-1;while(len<=n)len<<=1,++up;for(int i=1;i<len;++i) rader[i]=(rader[i>>1]>>1)|((i&1)<<up);return len;}
inline void NTT(int*A,int n,int f){
for(int i=1;i<n;++i) if(rader[i]>i) swap(A[i],A[rader[i]]);
for(int i=1,h=1;i<n;++h,i<<=1){
int W= (~f) ? wn[h]:iwn[h];
for(int j=0,p=i<<1;j<n;j+=p)
for(int w=1,k=0;k<i;++k,w=(ll)W*w%mod){
int X=A[j|k],Y=(ll)w*A[j|k|i]%mod;
A[j|k]=Sum(X,Y),A[j|k|i]=Dif(X,Y);
}
}if(!~f) for(int i=0;i<n;++i) A[i]=(ll)A[i]*Inv[n]%mod;
}
int n,m;
inline void Poly_Inv(int*F,int*I,int n){
if(n==1) {I[0]=1;return;}
Poly_Inv(F,I,(n+1)>>1);int len=Init(n<<1);
static int A[MAXN];for(int i=0;i<n;++i) A[i]=F[i];Clear(A,n,len);
NTT(A,len,1);NTT(I,len,1);
for(int i=0;i<len;++i) I[i]=Dif(2ll*I[i]%mod,(ll)I[i]*I[i]%mod*A[i]%mod);
NTT(I,len,-1);Clear(I,n,len);return;
}
int main()
{
Calc();init(n),init(m);
static int A[MAXN],G[MAXN];int x;
for(int i=1;i<=m;++i) init(x),A[x-1]=phi;A[0]=1;
int k=n;G[0]=1;int len=Init(n<<1);
while(k) {
NTT(A,len,1);
if(k&1) {
NTT(G,len,1);
for(int i=0;i<len;++i) G[i]=(ll)G[i]*A[i]%mod;
NTT(G,len,-1);Clear(G,n,len);
}
for(int i=0;i<len;++i) A[i]=(ll)A[i]*A[i]%mod;
NTT(A,len,-1);Clear(A,n,len);k>>=1;
}
Set(A,0);Poly_Inv(G,A,n);
int ans=(ll)A[n-1]*Inv[n]%mod;
cout<<ans<<endl;
return 0;
}

【BZOJ3684】大朋友和多叉树(拉格朗日反演)的更多相关文章

  1. BZOJ 3684: 大朋友和多叉树 [拉格朗日反演 多项式k次幂 生成函数]

    3684: 大朋友和多叉树 题意: 求有n个叶子结点,非叶节点的孩子数量\(\in S, a \notin S\)的有根树个数,无标号,孩子有序. 鏼鏼鏼! 树的OGF:\(T(x) = \sum_{ ...

  2. bzoj3684: 大朋友和多叉树(拉格朗日反演+多项式全家桶)

    题面 传送门 题解 首先你得知道什么是拉格朗日反演->这里 我们列出树的个数的生成函数 \[T(x)=x+\prod_{i\in D}T^i(x)\] \[T(x)-\prod_{i\in D} ...

  3. [BZOJ3684]大朋友和多叉树

    设答案为$f_s$,它的生成函数为$\begin{align*}F(x)=\sum\limits_{i=0}^\infty f_ix^i\end{align*}$,则我们有$\begin{align* ...

  4. BZOJ3684 大朋友和多叉树(多项式相关计算)

    设$f(x)$为树的生成函数,即$x^i$的系数为根节点权值为$i$的树的个数.不难得出$f(x)=\sum_{k\in D}f(x)^k+x$我们要求这个多项式的第$n$项,由拉格朗日反演可得$[x ...

  5. BZOJ 3684 大朋友和多叉树

    BZOJ 3684 大朋友和多叉树 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的: ...

  6. [BZOJ3684][拉格朗日反演+多项式求幂]大朋友和多叉树

    题面 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的:点权为\(1\)的结点是叶子结 ...

  7. 【bzoj3684】 大朋友和多叉树 生成函数+多项式快速幂+拉格朗日反演

    这题一看就觉得是生成函数的题... 我们不妨去推下此题的生成函数,设生成函数为$F(x)$,则$[x^s]F(x)$即为答案. 根据题意,我们得到 $F(x)=x+\sum_{i∈D} F^i(x)$ ...

  8. [拉格朗日反演][FFT][NTT][多项式大全]详解

    1.多项式的两种表示法 1.系数表示法 我们最常用的多项式表示法就是系数表示法,一个次数界为\(n\)的多项式\(S(x)\)可以用一个向量\(s=(s_0,s_1,s_2,\cdots,s_n-1) ...

  9. 【CSA35G】【XSY3318】Counting Quests DP 拉格朗日反演 NTT

    题目大意 zjt 是个神仙. 一天,zjt 正在和 yww 玩猜数游戏. zjt 先想一个 \([1,n]\) 之间的整数 \(x\),然后 yww 开始向他问问题. yww 每次给 zjt 一个区间 ...

随机推荐

  1. FreeBSD Here is how to upgrade

    freebsd-version  or  uname -mrs freebsd-update fetch install pkg update && pkg upgrade -y fr ...

  2. Spring Web Flow 2.0 入门

    转载: https://www.ibm.com/developerworks/cn/education/java/j-spring-webflow/index.html 开始之前 关于本教程 本教程通 ...

  3. ABAP的smartform赋值

    添加文本后, 在输出选项中指定行/列

  4. 【DSP开发】ccsv6添加simulator功能

    ccsv5更新到ccsv6后,ti去掉了simulator功能,具体的说法是"CCSv6 does NOT have any simulators. Texas Instruments is ...

  5. Java基础/网络经验

    一.Java新特性好文--掘金 1.Java8 新特性指导手册 2.Java 11 已发布,String 还能这样玩 二.Java避坑 1.为什么阿里巴巴不建议在for循环中使用"+&quo ...

  6. ${pagecontext.request.contextpath}绝对路径理解

    ${pageContext.request.contextPath}是JSP取得绝对路径的方法,等价于<%=request.getContextPath()%> .也就是取出部署的应用程序 ...

  7. 三、Kubernetes_V1.10集群部署-master-部署flanne网络

    1. etcdctl --ca-file=/etc/etcd/ssl/ca.pem --cert-file=/etc/etcd/ssl/server.pem --key-file=/etc/etcd/ ...

  8. LPVOID 指针 转 int

    1 DWORD  WINAPI  SockUDP::RecvThread(LPVOID lparam){   //套接字  正确:int sock= *(int*)(lparam);   错误:int ...

  9. linux项目运行环境搭建

    # 命令查看可修改分辨率  xrandr # 选择要修改的分辨率  xrandr -s 1360x768# 删除文件命令  rm -rf 文件名/ # XShell工具进行远程连接了 sudo apt ...

  10. 2019.07.09 纪中_B

    错失AK记 2019.07.09[NOIP提高组]模拟 B 组 明明今天的题都很水,可就是没蒟蒻. 写题的时候: T0一眼高精(结果没切)T1看到2啊8啊果断转二进制观察,发现都是左移几位然后空出的位 ...